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Forcing a copy of F in a (hyper)graph H

Turán’s theorem: G n-vertex graph,

e(G ) >

(
1− 1

r − 1

)(
n

2

)
=⇒ Kr ⊆ G

The Erdős–Stone theorem determines the asymptotic
threshold for all graphs F
(replace r with χ(F ) in Turán’s theorem)
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Forcing a copy of F in a (hyper)graph H

Far less is known about the corresponding problem for
k-graphs (i.e. k vertices in each edge)

For example, for 3-graphs still open for K 3
4 (4 vertices, 4

edges) and K−
4 (4 vertices, 3 edges).
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Perfect tilings in graphs

An F -tiling in G is a collection of vertex-disjoint copies of F
in G .

An F -tiling is perfect if it covers all vertices in G .

F

perfect F -tiling
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Remarks

Perfect F -tilings also known as F -factors, perfect F -packings
and perfect F -matchings.

If F = K2 then perfect F -tiling ⇐⇒ perfect matching.

Edge density problem not as interesting, so instead look at
minimum degree problem.
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Perfect Kr -tilings

Theorem (Hajnal, Szemerédi ‘70)

G graph, |G | = n where r |n and

δ(G ) ≥ (r − 1) n/r

⇒ G contains a perfect Kr -tiling.

Corrádi and Hajnal (‘64) proved triangle case

Easy to see that that Hajnal–Szemerédi theorem best possible.

Kühn and Osthus ‘09 characterised, up to an additive
constant, δ(G ) that forces perfect F -tiling for any F .
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Perfect tilings in hypergraphs

Akin to the Turán problem, it seems perfect tiling problems
are much harder in the hypergraph case.

H k-graph, 1 ≤ ` < k

dH(v1, . . . , v`) = # edges containing v1, . . . , v`

minimum `-degree δ`(H) = minimum over all dH(v1, . . . , v`)

δ1(H) = minimum vertex degree

δk−1(H) = minimum codegree
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Previous results for k-graph tiling

Define δ(n,F ) = min{m : every k-graph H on n vertices with
δk−1(H) ≥ m contains a perfect F -tiling}.

Kühn, Osthus (asymptotic, 2006), Czygrinow, DeBiasio,
Nagle (2013): n ≥ n0,

δ(n,K 3
4 − 2e) =

{
n/4 + 1 if n ∈ 8N
n/4 otherwise.

Lo, Markström (asymptotic, 2015); Keevash, Mycroft (2015):
n ≥ n0,

δ(n,K 3
4 ) =

{
3n/4− 2 if n ∈ 8N
3n/4− 1 otherwise.

Mycroft 2015: δ(n,F ) asymptotically for complete k-partite
k-graphs.
Gao, Han 2015+: δ(n,C 3

6 ) exactly; Czygrinow 2015: loose
cycles in 3-graphs exactly.
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Main result

Let H be a 3-graph on n vertices, where 4 | n.

Theorem (Lo, Markström 2014)

If δ2(H) ≥ n/2 + o(n), then H contains a perfect K−
4 -tiling.

Theorem (Han, Lo, T., Zhao 2015+)

If n ≥ n0 and δ2(H) ≥ n/2− 1, then H contains a perfect
K−
4 -tiling.

Lower bound Construction:
V = A ∪ B, |B| ∈ {n2 ,

n
2 − 1} and 3 - |B|.

Every edge intersects A in 1 or 3 vertices.
Every copy of K−

4 intersects B in 0 or 3 vertices.
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Proof overview

A K−
4 -tiling K absorbs a set U outside V (K) if there is a K−

4 -tiling
on V (K) ∪ U.

Lemma (Absorbing Lemma)

If δ(H) ≥ (12 − γ)n, then H contains a small absorbing K−
4 -tiling

unless H is in the extremal case.

Lemma (Almost Tiling Lemma)

Assume 1/n� ε� γ. If δ(H) ≥ (12 − γ)n, then H contains a
K−
4 -tiling on n − εn vertices.

Lemma (Extremal Case)

H is in the extremal case and δ(H) ≥ n
2 − 1 =⇒ ∃ a perfect

K−
4 -tiling in H.
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Sketch of the proof of the Absorbing Lemma

Lemma (Absorbing Lemma)

If δ(H) ≥ (12 − γ)n, then H contains a small absorbing K−
4 -tiling

unless H is in the extremal case.

To obtain an absorbing set it suffices to show there are ‘many’
(x , y)-connectors for each x , y ∈ V (H).

Case 1: For every x ∈ V (H), x forms a copy of K−
4 with

many edges e.

=⇒ ∃ many (x , y)-connectors for ≥ (1/4− o(1))n vertices
y ∈ V (H)

=⇒ H can be partitioned into at most 4 closed components
V1, . . . ,Vm.

Now show we can merge V1, . . . ,Vm into a single closed
component.
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Sketch of the proof of the Absorbing Lemma

Lemma (Absorbing Lemma)

If δ(H) ≥ (12 − γ)n, then H contains a small absorbing K−
4 -tiling

unless H is in the extremal case.

Case 2: There exists a v ∈ V (H), s.t. v forms a copy of K−
4

with few edges e.

=⇒ ∃ a partition X ,Y of V (H) s.t. almost all XXY - and
XYY -edges lie in H

=⇒ H has an absorbing set.
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Open problems

Even less is known about minimum vertex degree conditions
that force perfect tilings in k-graphs.

What is δ1(n,K−
4 )?

What is δ1(n,K 3
4 )?

Han, Zhao (2015) determined δ1(n,K 3
4 − 2e).

Prove a Hajnal-Szemerédi theorem for 3-graphs, e.g.,
determining δ2(n,K 3

t ) for all t > 4.

Andrew Treglown Exact Minimum Codegree Threshold for K−
4 -factors




