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Abstract. Balogh, Liu, Sharifzadeh and Treglown [Journal of the European Mathematical Society,
2018] recently gave a sharp count on the number of maximal sum-free subsets of {1, . . . , n}, thereby
answering a question of Cameron and Erdős. In contrast, not as much is know about the analogous
problem for finite abelian groups. In this paper we give the first sharp results in this direction,
determining asymptotically the number of maximal sum-free sets in both the binary and ternary
spaces Zk2 and Zk3 . We also make progress on a conjecture of Balogh, Liu, Sharifzadeh and Treglown
concerning a general lower bound on the number of maximal sum-free sets in abelian groups of a
fixed order. Indeed, we verify the conjecture for all finite abelian groups with a cyclic component
of size at least 3084. Other related results and open problems are also presented.

1. Introduction

Let G be a group or set of integers. A triple x, y, z ∈ G is a Schur triple if x + y = z (note
x, y and z may not necessarily be distinct). We say that a subset A of G is sum-free if A contains
no Schur triples. A maximal sum-free subset of G is a sum-free set A ⊆ G that is not properly
contained in another sum-free subset of G.

There has been significant interest in the study of sum-free subsets of [n] := {1, . . . , n}. It is
an easy exercise to prove that the largest sum-free subset of [n] has size dn/2e (attained, e.g., by
the set of odd integers in [n]). Answering (a stronger version of) a conjecture of Cameron and
Erdős [4], Green [10] and independently Sapozhenko [18] proved the following: there are constants

C1 and C2 such that the number of sum-free subsets in [n] is (Ci + o(1))2n/2 for all n ≡ i (mod 2).
Addressing another problem of Cameron and Erdős [5], Balogh, Liu, Sharifzadeh and the second
author [3] proved the following: for each 1 ≤ i ≤ 4, there is a constant Di such that, given any

n ≡ i (mod 4), [n] contains (Di + o(1))2n/4 maximal sum-free sets.
There has also been interest in studying analogous questions in the setting of groups. In what

follows G will always be a finite abelian group, where unless stated otherwise, G has order n.
Denote by µ(G) the size of a largest sum-free subset of G. Denote by f(G) the number of sum-free
subsets of G and by fmax(G) the number of maximal sum-free subsets of G.

The study of sum-free sets in finite abelian groups dates back to the 1960s. Indeed, Diananda
and Yap [9] determined µ(G) for all so-called type I and II groups. However, it was not until 2005
that Green and Ruzsa [12] determined µ(G) exactly for all finite abelian groups; see Theorem 2.2
below. In particular, for every finite abelian group G of order n, 2n/7 ≤ µ(G) ≤ n/2. Further,
Green and Ruzsa [12] determined f(G) up to an error term in the exponent for all finite abelian

groups G, showing that f(G) = 2µ(G)+o(n). A refined version of this counting result for type I
groups was obtained by Alon, Balogh, Morris and Samotij [1].

Much less is known, however, about the value of fmax(G). Improving on an earlier bound of
Wolfovitz [19], the following result provides a general upper bound on fmax(G) and shows there is
an exponential gap between the values of f(G) and fmax(G).
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Proposition 1.1. [3] Let G be an abelian group of order n. Then

fmax(G) ≤ 3µ(G)/3+o(n).

Let Zkp := Zp × Zp × · · · × Zp. Sum-free sets in Zk2 have been well studied. As noted in the

introduction of [6], ‘sum-free sets [in Zk2] also occur in geometry as blocking sets... and in coding
theory as the set of columns of a parity check matrix for a linear code with minimum distance at least
four’. Motivated by coding theory applications, Davydov and Tombak [8] and also independently
Clark and Pedersen [6] provided a structural characterisation of ‘large’ sum-free subsets of Zk2 (see

Theorem 2.4 below). In [3] it was proven that fmax(Zk2) = 2µ(Zk2)/2+o(n) where µ(Zk2) = n/2. Our
first theorem gives a sharp version of this result.

Theorem 1.2. Let k ∈ N and n := 2k. Then

fmax(Zk2) =

((
n− 1

2

)
+ o(1)

)
2n/4.

Theorem 1.2 provides the first finite abelian groups for which we now do have a sharp count
on the number of maximal sum-free subsets. We also believe Theorem 1.2 is of interest to the
projective space community. Indeed, the notion of a so-called complete cap in a projective space
PG(k, 2) over F2 is equivalent to the notion of a maximal sum-free set in Zk+1

2 . Thus, Theorem 1.2
asymptotically determines the number of complete caps in PG(k, 2); see Section 6.2 for further
details.

Other than for Zk2, the only other finite abelian groups G for which fmax(G) is known up to an
error term in the exponent are G for which 9|n but p - n for every prime p with p ≡ 2 (mod 3). In
this case, Liu and Sharifzadeh [16] proved that the upper bound in Proposition 1.1 is in fact tight.

That is, for such G we have fmax(G) = 3µ(G)/3+o(n).
Our next theorem sharpens this result when G = Zk3; note that µ(Zk3) = 3k−1.

Theorem 1.3. Let k ∈ N and n := 3k. Then

fmax(Zk3) =

(
(n− 3)(n− 1)

3
+ o(1)

)
3n/9.

The proofs of Theorem 1.2 and Theorem 1.3 draw on a number of ideas and tools from previous
papers [2, 3, 16] and in particular, utilise a container theorem of Green and Ruzsa [12]. We also
utilise structural results from [6, 8, 15] (which view Zkp as a vector space over Zp). It is worth
remarking that our proofs actually show that the o(1) terms in Theorems 1.2 and 1.3 are of the
form O(2−δn) for some fixed δ > 0.

In both [3] and [16] a number of questions and conjectures concerning fmax(G) are raised. In
particular, motivated by the fact that 2n/7 ≤ µ(G) ≤ n/2 for every finite abelian group G of order
n, the following conjecture was made in [3].

Conjecture 1.4. [3] For every abelian group G of order n,

2n/7 ≤ fmax(G) ≤ 2n/4+o(n),

where the bounds, if true, are best possible.

In this paper we give a wide class of abelian groups for which the lower bound in Conjecture 1.4
holds, including all abelian groups that have a cyclic component of size at least 3084 (see Proposi-
tion 5.2 below).

The paper is organised as follows. In the next section we collect together some results that will
be applied in our proofs. We prove Theorems 1.2 and 1.3 in Sections 3 and 4 respectively. In
Section 5 we give various constructions that provide lower bounds on fmax(G). Finally, we give
some concluding remarks and open problems in Section 6.
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2. Useful results

2.1. Maximum size sum-free sets and containers. The following definitions play an important
role in describing the behaviour of µ(G) for finite abelian groups.

Definition 2.1. Let G be an abelian group of order n.

• Let n be divisible by a prime p ≡ 2 (mod 3). Given the smallest such p, we say that G is
type I(p).
• If n is not divisible by any prime p ≡ 2 (mod 3), but 3|n, then we say that G is type II.
• Otherwise, G is type III.

As summarised in the following theorem, results from [9, 12] determine the size of a largest
sum-free set for any abelian group.

Theorem 2.2. Given any finite abelian group G, if G is type I(p) then µ(G) = |G|
(

1
3 + 1

3p

)
.

Otherwise, if G is type II then µ(G) = |G|
3 . Finally, if G is type III then µ(G) = |G|

(
1
3 −

1
3m

)
where m is the exponent (largest order of any element) of G.

We will also use the following container result of Green and Ruzsa [12] (the version below is the
one stated in [16]).

Lemma 2.3. [12] Given any finite abelian group G of order n there is a family F of subsets of G
with the following properties.

(i) Every F ∈ F has at most (log n)−1/9n2 Schur triples.
(ii) If S ⊆ G is sum-free, then S is contained in some F ∈ F .

(iii) |F| ≤ 2n(logn)−1/18
.

(iv) Every member of F has size at most µ(G) + n(log n)−1/50.

We refer to the sets in F as containers. The result gives us a method to count the number of
maximal sum-free sets in an abelian group G. Indeed, by (ii) it suffices to count the number of
maximal sum-free sets that lie in our containers.

2.2. Structural results for sum-free sets. As we wish to obtain sharp bounds on fmax(Zk2)
and fmax(Zk3) we must be rather careful about how we count the maximal sum-free sets in each
container. As such we need information on the structure of sum-free sets in Zk2 and Zk3. The
following theorem describes the structure of sum-free sets in Zk2.

Theorem 2.4. [6, 8] Let k ≥ 4 and let A ⊆ Zk2 be a sum-free set. If |A| > 5 · 2k−4 then A is
contained in a coset x+ U where U ⊆ Zk2 is a subspace of Zk2 and x /∈ U .

The following result of Lev [15] provides a similar structure for sum-free sets in Zk3.

Theorem 2.5. [15] Let k ≥ 3 and let A ⊆ Zk3 be a sum-free set. If |A| > 5·3k−3 then A is contained
in a coset g +H where H ⊆ Zk3 is a subspace of Zk3 and g /∈ H.

Thus, both Theorems 2.4 and 2.5 state that either a sum-free set is ‘small’ or has a simple
structure; that is, it is contained in a coset.

2.3. Maximal independent sets in graphs. Similarly to previous papers on the topic [2, 3, 16,
19], we translate our problems into the setting of maximal independent sets in graphs. As such,
in this subsection we introduce some notation, definitions and useful results for graphs and their
maximal independent sets.

Let Γ = (V,E) be a graph. Throughout this paper we consider graphs Γ possibly with loops; that
is, Γ can be obtained from a simple graph by adding at most one loop at each vertex. We write
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e(Γ) := |E| for the number of edges in Γ. Given a vertex x ∈ V we write d(x,Γ) for the degree of x
in Γ (i.e., the number of times x is an endpoint of an edge in G). Note that a loop at x contributes
two to the degree of x. We write δ(Γ) for the minimum degree and ∆(Γ) for the maximum degree
of Γ. We write Km and Cm respectively for the complete graph and the cycle on m vertices. Given
graphs Γ and Γ′ we write Γ�Γ′ for the cartesian product graph. So its vertex set is V (Γ) × V (Γ′)
and (x, y) and (x′, y′) are adjacent in Γ�Γ′ if (i) x = x′ and y and y′ are adjacent in Γ′ or (ii) y = y′

and x and x′ are adjacent in Γ.
We denote by mis(Γ) the number of maximal independent sets in Γ. Moon and Moser [17] proved

the following bound which holds for any n-vertex graph Γ:

(2.1) mis(Γ) ≤ 3n/3.

Note the bound (2.1) is tight; consider a graph consisting of the disjoint union of triangles. However,
Hujter and Tuza [13] improved this bound in the case of triangle-free graphs Γ:

(2.2) mis(Γ) ≤ 2n/2.

If Γ is a perfect matching then we have equality in (2.2). The following lemma improves the bound
(2.1) in the case of somewhat regular and dense graphs.

Lemma 2.6. [2, Equation (3)] Let k ≥ 1 and let Γ be a graph on n vertices. Suppose that

∆(Γ) ≤ kδ(Γ) and set b :=
√
δ(Γ). Then

mis(Γ) ≤
∑

0≤i≤n/b

(
n

i

)
· 3( k

k+1)n3 + 2n
3b .

We will also use the following refined version of the Moon–Moser bound (2.1).

Lemma 2.7. [16, Lemma 3.5] Let k ∈ Z, ∆ ∈ N, and C ≥ 3∆/13. Let Γ be an n-vertex graph with
n+ k edges and maximum degree ∆, then

mis(Γ) ≤ C · 3
n
3
− k

13∆ .

In order to connect our problem of estimating the number of maximal sum-free sets in a group
G to the count of the maximal independent sets in a graph, we define the link graph. For subsets
B,S ⊆ G let LS [B] be the link graph of S on B defined as follows. The vertex set of LS [B] is B
and its edge set is composed of the following edges:

(i) two vertices x, y ∈ B are adjacent if there exists s ∈ S such that {x, y, s} is a Schur triple;
(ii) there is a loop at a vertex x ∈ B if there exists s, s′ ∈ S such that {x, x, s} or {x, s, s′} is a

Schur triple.

As in [16] we distinguish two types of edges in the link graph. We call an edge xy ∈ E(LS [B]) a
type 1 edge if x − y = s for some s ∈ S ∪ (−S). Otherwise, if x + y = s for some s ∈ S we call it
a type 2 edge. Let Γ := LS [B]; we denote by Γ1 and Γ2 the subgraphs of Γ consisting respectively
of type 1 and type 2 edges. We write di(x,Γ) for d(x,Γi) (for i = 1, 2). Note that we might have
some edges of both types. In this case they appear in both Γ1 and Γ2. Let x ∈ B such that there
is a loop at x in Γ. If there are s, s′ ∈ S such that {x, s, s′} is a Schur triple then we call this loop a
bad loop. Otherwise, if there is s ∈ S such that 2x = s then we consider this loop as a type 2 edge,
so it belongs to Γ2.

The following lemma from [2] provides a crucial connection between maximal sum-free sets and
maximal independent sets in the link graph.

Lemma 2.8. [2] Suppose that B,S ⊆ G are both sum-free. If I ⊆ B is such that S∪I is a maximal
sum-free subset of G, then I is a maximal independent set in LS [B].
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Note Lemma 2.8 was proven in [2] for sum-free subsets of [n] but the proof for abelian groups is
identical.

We now introduce some notation that will help generalise a lower bound construction for a group
H to a cartesian product H ×K.

Definition 2.9. Let Γ1 = (V,E1) and Γ2 = (V,E2) be two graphs with the same vertex set. We
define the graph Γ1 o Γ2 := (V × {0, 1}, E) as follows:

E := {((x, i), (y, i)) | (x, y) ∈ E1, i = 0, 1} ∪ {((x, 0), (y, 1)) | (x, y) ∈ E2}.

Therefore, intuitively Γ1 o Γ2 consists of two copies of Γ1 connected by the edges of Γ2. The
following lemma shows how to build a link graph for a group H × K from a link graph for H.
Recall that for a link graph Γ := LS [B], Γi denotes the subgraph of Γ consisting of type i edges, for
i = 1, 2. We also write Γ′ for the graph obtained from Γ by removing bad loops. Note that Γ′i = Γi
for i = 1, 2.

Lemma 2.10. Let H,K be abelian groups and a := |{k ∈ K | k + k = 0K}|. Let B,S ⊆ H be

disjoint sum-free sets and Γ := LS [B]. Then B̃ := B ×K and S̃ := S ×{0K} are disjoint sum-free

sets in G := H × K and the graph Γ̃ := LS̃ [B̃] consists precisely of the following vertex-disjoint
subgraphs: one copy of Γ, a− 1 copies of Γ′ and (|K| − a)/2 copies of Γ1 o Γ2. In particular,

mis(Γ̃) = mis(Γ) ·mis(Γ′)a−1 ·mis(Γ1 o Γ2)(|K|−a)/2.

Proof. By definition, B̃ and S̃ are disjoint sum-free sets. It is easy to check that (b1, k1), (b2, k2) ∈ B̃
form a type 1 edge in Γ̃ if and only if b1 and b2 form a type 1 edge in Γ and k1 = k2. Simi-
larly, (b1, k1), (b2, k2) ∈ B̃ form a type 2 edge in Γ̃ if and only if b1 and b2 form a type 2 edge

in Γ and k1 = −k2. Then E1(Γ̃) = {((x, k), (y, k)) | (x, y) ∈ E1(Γ), k ∈ K} and E2(Γ̃) =
{((x, k), (y,−k)) | (x, y) ∈ E2(Γ), k ∈ K}. Let k ∈ K\{0K}.

• If k = −k, then the subgraph of Γ̃ induced by the vertices of B×{k} is a copy of Γ′. Indeed,
since k 6= 0K we cannot have any bad loop in the component induced by B × {k}.
• If k 6= −k, then the subgraph of Γ̃ induced by the vertices of B×{k,−k} is a copy of Γ1oΓ2.

Indeed, an edge of this graph is either of the form ((b1, k), (b2, k)) or ((b1,−k), (b2,−k)) with
(b1, b2) ∈ E1(Γ), or of the form ((b1, k), (b2,−k)) with (b1, b2) ∈ E2(Γ). Conversely, every
edge of one of those two forms is an edge of this subgraph.

If k = 0K we have the same situation as in the first point, but with the bad loops, so the subgraph
of Γ̃ induced by the vertices of B × {0K} is a copy of Γ. There are a− 1 elements in K\{0} such
that k = −k and (|K| − a)/2 pairs {k,−k} with k 6= −k. This now immediately yields the desired

bound on mis(Γ̃). �

3. Proof of Theorem 1.2

3.1. Upper bound. In this section we prove the upper bound in Theorem 1.2. For this we will
apply Theorem 2.4 together with ideas from [3, 16] to show that the number of maximal sum-free
sets from a specific class is negligible, and then we will count precisely the remaining maximal
sum-free sets.

We apply Lemma 2.3 to G = Zk2 and we consider any container F . By Lemma 2.3 (i) and a
group removal lemma of Green [11, Theorem 1.4], F = B ∪ C with B sum-free and |C| = o(n).
(For example, here we can choose C to be a smallest subset of F so that B := F \ C is sum-free.)

Then, every maximal sum-free set of G in F can be built in the following way:

(1) Choose a (perhaps empty) sum-free set S in C;
(2) Extend S in B to a maximal one.
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This two-step approach to constructing maximal sum-free sets will be crucial to our argument.
With this in mind, we now distinguish four types of maximal sum-free sets.

Type 0: those obtained from a container F where S is chosen to be empty.
Type 1: those obtained from a container F where |B| ≤ 5 · 2k−4 and |S| ≥ 1.
Type 2: those obtained from a container F where |B| > 5 · 2k−4 and |S| ≥ 2.
Type 3: those obtained from a container F where |B| > 5 · 2k−4 and an S which is a singleton.

Let f imax(G) be the total number of maximal sum-free sets in G of type i. Similarly we write
f imax(F ) for the number of maximal sum-free sets of type i that lie in the container F . We will
show that f0

max(G) + f1
max(G) + f2

max(G) is negligible and then we will quantify f3
max(G) precisely.

Note that each container F can produce at most one type 0 maximal sum-free set (namely, B), so

f0
max(G) ≤ 2n(logn)−1/18

by Lemma 2.3 (iii).
Fix any non-empty sum-free set S in C. Note the zero element does not lie in S as S is sum-free.

In what follows we count how many ways we can extend S in B to a maximal sum-free subset of
G. Let Γ := LS [B] be the link graph of S on B. From Lemma 2.8 we have that the number of
extensions of S in B to a maximal sum-free set is at most mis(Γ).

Claim 3.1. If |B| ≤ 5 · 2k−4 = 5n/16 then mis(Γ) ≤ 35n/48 ≤ 20.17n.

Proof. This follows immediately from (2.1). �

We will now consider type 2 and type 3 maximal sum-free sets. Then we suppose |B| > 5 · 2k−4,
so by Theorem 2.4 we can assume that B ⊆ x + U with U a subspace of G and x /∈ U . In fact,
(by adding elements to the container F if necessary) we may assume B = x + W where W is a
subspace with dim(W ) = k − 1 and x /∈ W , as f imax(F ) ≤ f imax(F ′) for any F ′ ⊇ F , i = 2, 3. So
|B| = |G|/2 = n/2. Also, as B and S can be taken disjoint, we have S ⊆W .

Under these conditions, we now show that the link graph is regular.

Claim 3.2. The link graph Γ is |S|-regular.

Proof. Let b ∈ B; then each s ∈ S gives rise to exactly one neighbour of b in Γ, namely b + s.
Indeed, as G = Zk2, if b1, b2 ∈ B, b1 + b2 = s if and only if b2 = b1 + s if and only if b1 = b2 + s.
Recall that since S is sum-free, it does not contain the zero element. Then we cannot have loops
in Γ as 2b = 0 and b+ 0 = b are not valid solutions, and b+ s = s′ means b = s+ s′ ∈W which is
impossible. �

Claim 3.3. If |S| > 104 then mis(Γ) ≤
(
n

200 + 1
)
· 20.18n.

Proof. We apply Lemma 2.6 with k = 1 and b ≥ 100. Therefore,

mis(Γ) ≤
∑

0≤i≤|B|/100

(
|B|
i

)
· 3
|B|
6

+
2|B|
300 ≤

( n

200
+ 1
)
· (100e)n/200 · 313n/150 <

( n

200
+ 1
)
· 20.18n.

�

Claim 3.4. If 4 ≤ |S| ≤ 104 then mis(Γ) ≤ 3104/13 · 20.249n.

Proof. Since Γ is |S|-regular, e(Γ) = |B||S|
2 = |B|+ |B|(|S|−2)

2 . So by Lemma 2.7, setting C := 3104/13,

∆ := |S| and k := |B|(|S|−2)
2 , we have,

mis(Γ) ≤ C · 3
|B|
3
− |B|(|S|−2)

26|S| ≤ C · 349n/312 < C · 20.249n.

�

Claim 3.5. If |S| = 2, mis(Γ) = 2n/8.
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Proof. When s1 6= s2, L{s1,s2}[B] is the disjoint union of n/8 cycles C4 of the form {b, b + s1, b +

s1 + s2, b+ s2}. Since mis(C4) = 2, mis(L{s1,s2}[B]) = 2n/8. �

Claim 3.6. If |S| = 3, mis(Γ) = 6n/16 < 20.17n.

Proof. Similarly to the previous claim, when {s1, s2, s3} is sum-free, L{s1,s2,s3}[B] consists this time
of n/16 disjoint copies of the cube K2�K2�K2, which has 6 maximal independent sets. Indeed, as
{s1, s2, s3} is sum-free, we can consider it as a family of linearly independent vectors over Z2, then

the component of Γ containing b ∈ B is as in Figure 1. Hence mis(Γ) = 6n/16.

b

b+ s3

b+ s1

b+ s1 + s2 + s3

b+ s1 + s2b+ s2

b+ s2 + s3

b+ s1 + s3

Figure 1 - The cube K2�K2�K2.

�

Claim 3.7. f0
max(G) + f1

max(G) + f2
max(G) ≤ o(1) · 2n/4.

Proof. We saw already that f0
max(G) ≤ 2n(logn)−1/18

. Now we count type 2 maximal sum-free sets.

By Lemma 2.3 there are at most 2n(logn)−1/18
containers F . For each choice of F there are 2o(n)

choices for S. By Claims 3.3–3.6, there are two constants C,α > 0 such that for each fixed S with
|S| ≥ 2, mis(Γ) ≤ C · 2(1/4−α)n. Finally, by Lemma 2.8,

f2
max(G) ≤ C · 2n(logn)−1/18 · 2o(n) · 2(1/4−α)n.

Therefore, for n sufficiently large, f2
max(G) ≤ C · 2(1/4−α/2)n = o(1) · 2n/4. The analogous argument

applied with Claim 3.1 implies that f1
max(G) ≤ o(1) · 2n/4. �

Claim 3.8. f3
max(G) ≤ (n−2)(n−1)

2 · 2n/4.

Proof. To give an upper bound on f3
max(G) recall it suffices to assume each relevant container is of

the form F = B ∪ C where B = x + W and W is a subspace of G with dim(W ) = k − 1; x /∈ W ;
|C| = o(n). Moreover, for type 3 maximal sum-free sets, S is a singleton. Thus, to upper bound
f3

max(G) it suffices to sum up the number of maximal independent sets in all link graphs of the form
L{s}[x+W ] where dim(W ) = k − 1; x /∈W and {s} ⊆W is a sum-free singleton, so any singleton
except {0}.

Let W ⊆ G be any (k − 1)-dimensional subspace of G, x /∈ W and s ∈ W\{0}. Let Γ :=
L{s}[x + W ] be the link graph of {s} on x + W . By Claim 3.2, Γ is 1-regular so it is a perfect

matching between the elements of x+W . Since |x+W | = n/2, mis(Γ) = 2|x+W |/2 = 2n/4.
Now we have to count how many such pairs (x + W, {s}) we have. There are n − 1 subspaces

W in G of dimension k− 1, and exactly one coset for each, thus there are n− 1 choices for x+W .
Once x+W is fixed, since {s} is a sum-free singleton in W , we have |W\{0}| = n/2− 1 choices for
{s}. It may be that we count the same maximal sum-free set for two different pairs (x + W, {s}),
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but here we are just looking for an upper bound so we do not mind over-counting yet. Overall, we
have (n− 1)(n/2− 1) = (n− 1)(n− 2)/2 such pairs and 2n/4 maximal sum-free sets generated by

each pair, thus f3
max(G) ≤ (n−2)(n−1)

2 · 2n/4. �

Since every maximal sum-free subset of G lies in a container, Claims 3.7 and 3.8 give us the
desired upper bound:

fmax(G) ≤ f0
max(G) + f1

max(G) + f2
max(G) + f3

max(G) ≤
((

n− 1

2

)
+ o(1)

)
2n/4.

3.2. Lower bound. In this subsection we show that type 3 maximal sum-free sets are those that
contribute to the dominant term in the asymptotic development of fmax(G). For a coset B = x+W
with W ⊆ G a (k − 1)-dimensional subspace; x /∈ W and S ⊆ W sum-free, we say that the pair
(B,S) generates a sum-free set A if there is a maximal independent set I in the link graph LS [B]
such that A = I ∪ S.

Claim 3.9. Consider any coset B = x + W with W ⊆ G a (k − 1)-dimensional subspace; x /∈ W
and any singleton {s} ⊆ W\{0}. Then (B, {s}) generates at least 2n/4 − (n/2− 2) · 2n/8 maximal
sum-free sets.

Proof. We fix B = x + W with dim(W ) = k − 1 and x /∈ W , and s ∈ W\{0}. We saw that

L{s}[B] has 2n/4 maximal independent sets. Let I ⊆ B be a maximal independent set in L{s}[B]
and suppose that {s} ∪ I is not a maximal sum-free set in G; call such an I bad. Then there exists
s′ ∈ W\{0, s} such that {s, s′} ∪ I is sum-free (s′ cannot belong to B otherwise I would not be a
maximal independent set). So I is a maximal independent set in L{s,s′}[B]. By Claim 3.5, there

are 2n/8 maximal independent sets in L{s,s′}[B]. Since there are n/2− 2 possibilities for s′, in total

there are at most (n/2− 2) · 2n/8 bad I. The claim immediately follows.
�

Now we have to be careful because we may count the same maximal sum-free set in two different
pairs (B, {s}).

Claim 3.10. Given distinct pairs (B, {s}), (B′, {s′}) there are at most n/4 maximal sum-free
subsets of G that are generated by both pairs.

Proof. Let (B, {s}) = (x+W, {s}) and (B′, {s′}) = (x′ +W ′, {s′}) be two distinct such pairs.

• If B = B′ then necessarily s 6= s′ and so maximal sum-free sets generated by these pairs
differ by at least one element.
• If B 6= B′ then |B ∩ B′| ≤ n/4. Indeed, as B and B′ are cosets, B ∩ B′ is either empty or

is a coset of a subspace of co-dimension two.
Note the maximal sum-free sets generated by (B, {s}) (resp. (B′, {s′})) consist of n/4

elements of B (resp. B′) plus s (resp. s′).
- If s = s′ then a maximal sum-free set generated by both pairs contains necessarily the

whole intersection B ∩B′ and s = s′, so there is only one such set.
- If s 6= s′ we can assume s ∈ B′ and s′ ∈ B otherwise a maximal sum-free set cannot

be generated by both pairs for the same reason as the first point. To build a maximal
sum-free set generated by both pairs, we need to choose obviously s and s′, and n/4−1
elements in B ∩B′. There are at most n/4 ways to do so, hence there are at most n/4
maximal sum-free sets generated by both pairs.

Altogether this shows that the number of maximal sum-free sets that are generated by both (B, {s})
and (B′, {s′}) is at most n/4. �

8



As there are
(

(n−2)(n−1)/2
2

)
couples of such pairs, we over-count only a number of maximal sum-

free sets which is polynomial in n, and so o(1) · 2n/4. Altogether we have that

fmax(G) ≥ (n− 2)(n− 1)

2
(2n/4 − (n/2− 2) · 2n/8)− o(1) · 2n/4

=

((
n− 1

2

)
− o(1)

)
2n/4.

4. Proof of Theorem 1.3

4.1. Upper bound. We will use the same method as in Section 3, though instead of Theorem 2.4
we will apply Theorem 2.5.

We apply Lemma 2.3 to G = Zk3. Consider any container F ; by Green’s removal lemma [11,
Theorem 1.5] we have that F = B ∪ C with B sum-free and |C| = o(n). As in Section 3, every
maximal sum-free subset of G in F can be built in the following way:

(1) Choose a (perhaps empty) sum-free set S in C;
(2) Extend S in B to a maximal one.

We then define the following types of maximal sum-free sets.

Type 0: those obtained from a container F where S is chosen to be empty.
Type 1: those obtained from a container F where |B| ≤ 5 · 3k−3 and |S| ≥ 1.
Type 2: those obtained from a container F where |B| > 5 · 3k−3 and |S| ≥ 2.
Type 3: those obtained from a container F where |B| > 5 · 3k−3 and an S which is a singleton.

We define f imax(G) and f imax(F ), i = 0, 1, 2, 3, analogously to before. As before, f0
max(G) ≤

2n(logn)−1/18
.

Fix any non-empty sum-free S ⊆ C and let Γ := LS [B] be the link graph of S on B.

Claim 4.1. If |B| ≤ 5 · 3k−3 = 5n/27 then mis(Γ) ≤ 35n/81 < 30.07n.

Proof. This follows immediately from (2.1). �

We will now consider type 2 and type 3 maximal sum-free sets. Thus, we suppose |B| > 5 · 3k−3,
so by Theorem 2.5, B ⊆ g +H with H a subspace of G over Z3 and g /∈ H. Analogously to before
we may assume that B = g +H with dim(H) = k − 1. So |B| = |G|/3 = n/3. Moreover, as B and
S can be taken disjoint, we have S ⊆ H ∪ (2g +H).

The following claim describes the regularity of the link graph.

Claim 4.2. For all x ∈ B,

• d1(x,Γ) = |(S ∪ (−S)) ∩H|;
• |(2g +H) ∩ S| ≤ d2(x,Γ) ≤ |(2g +H) ∩ S|+ 1.

Furthermore,

(4.1) |S| ≤ |(S ∪ (−S)) ∩H|+ |(2g +H) ∩ S| ≤ δ(Γ) ≤ ∆(Γ) ≤ 2|S|+ 1 ≤ 3δ(Γ).

Proof. For the first point, each element s ∈ (S∪(−S))∩H gives rise to exactly one type 1 neighbour
of x in Γ, namely x + s. Conversely, if there are x, y ∈ B and s ∈ S such that s = x − y then
necessarily s ∈ H. For the second point, note that each element s ∈ (2g+H)∩S creates one loop at
x ∈ g+H such that 2x = s (this x is unique). So for a given x ∈ B, either (i) 2x /∈ (2g+H)∩S and
so each s ∈ (2g+H)∩S gives one neighbour to x which is different from x or (ii) 2x ∈ (2g+H)∩S
and we have the same situation but one s creates a loop at x which contributes two to the degree
of x. Conversely, if there are x, y ∈ B and s ∈ S such that x+ y = s then necessarily s ∈ 2g +H.
Thus, the second point holds.
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Our argument above therefore implies that |(S ∪ (−S))∩H|+ |(2g+H)∩ S| ≤ δ(Γ). Note that
if (2g +H) ∩ S = ∅ then there cannot be any bad loops in Γ. Therefore, in this case we have that
∆(Γ) = |(S ∪ (−S)) ∩H| ≤ 2|S|.

So assume that (2g + H) ∩ S 6= ∅. Given any s ∈ (2g + H) ∩ S notice that −s 6∈ −S ∩ H.
This implies that |(S ∪ (−S)) ∩H|+ |(2g +H) ∩ S| ≤ 2(|S| − |(2g +H) ∩ S|) + |(2g +H) ∩ S| =
2|S| − |(2g +H) ∩ S| ≤ 2|S| − 1. Given any x ∈ B, if d2(x,Γ) = |(2g +H) ∩ S| then we may have
a bad loop at x in Γ and so

d(x,Γ) ≤ |(S ∪ (−S)) ∩H|+ |(2g +H) ∩ S|+ 2 ≤ 2|S|+ 1.

Otherwise, if d2(x,Γ) = |(2g +H) ∩ S|+ 1 then the loop at x in Γ is already counted here and so

d(x,Γ) ≤ |(S ∪ (−S)) ∩H|+ |(2g +H) ∩ S|+ 1 ≤ 2|S|.

In all cases we have shown that ∆(Γ) ≤ 2|S|+ 1.
The first inequality holds in (4.1) since

|S| = |S ∩H|+ |S ∩ (2g +H)| ≤ |(S ∪ (−S)) ∩H|+ |(2g +H) ∩ S|.

Altogether this shows that all inequalities in (4.1) hold. �

Claim 4.3. If |S| > 104 then mis(Γ) ≤
(
n

300 + 1
)
· 30.103n.

Proof. By (4.1) we can apply Lemma 2.6 with k = 3 and b ≥ 100:

mis(Γ) ≤
∑

0≤i≤n/300

(
n/3

i

)
· 3

n
12

+ 2n
900 ≤

( n

300
+ 1
)
· (100e)n/300 · 377n/900 <

( n

300
+ 1
)
· 30.103n.

�

Claim 4.4. If 3 ≤ |S| ≤ 104 then mis(Γ) ≤ 33·104/13 · 3(1/9−1/702)n.

Proof. By Claim 4.2, ∆(Γ) ≤ 3|S| ≤ 3 · 104 and

e(Γ) ≥ |B|δ(Γ)

2

(4.1)

≥ |B||S|
2

.

Then, by Lemma 2.7, with C = 33·104/13 and k = |B|(|S|−2)
2 ,

mis(Γ) ≤ 33·104/13 · 3
|B|
3

(
1− (|S|−2)

26·|S|

)
≤ 33·104/13 · 3

n
9
−n(|S|−2)

26·9|S| ≤ 33·104/13 · 3(1/9−1/702)n.

�

Claim 4.5. If |S| = 2, mis(Γ) ≤ 30.1n.

Proof. There are three cases depending on which coset the elements of S belong to. Note that since
S is sum-free, we cannot have S = {s,−s} = {s, 2s} for an s ∈ H ∪ (2g+H), and the zero element
does not belong to S.

Case 1: S = {s1, s2} with s1, s2 ∈ 2g + H. Let x1 := 2s1 ∈ B and x2 := 2s2 ∈ B be the unique
elements such that 2x1 = s1 and 2x2 = s2. Note that x2 = s1 − s2 + x1. The component
of Γ containing x1 and x2 is the path {x1, s2 − x1 = s1 − x2 = s1 + s2, x2} with a bad
loop at each of those three vertices (the loops at x1 and x2 are both bad loops and type 2
edges). Note the empty set is the only maximal independent set of this component. The
component in Γ of any x ∈ B\{x1, s1 + s2, x2} is the cycle C6 as shown in Figure 2. Then
Γ consists of the component of x1 and x2 and (|B| − 3)/6 disjoint copies of the cycle C6.

Since mis(C6) = 5, mis(Γ) = 5(|B|−3)/6 = 5n/18
√

5
< 30.1n.
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−s1 − s2 − xx

s1 − x −s1 + s2 + x

s1 − s2 + xs2 − x
Figure 2 - The 6-cycle C6.

Case 2: S = {s1, s2} with s1 ∈ H and s2 ∈ 2g + H. Let y := 2s2 ∈ B be the unique element
such that 2y = s2. Then the component of y is the triangle {y, s1 + y = s1 − s2,−s1 +
y = −s1 − s2} with a bad loop at y (which is also a type 2 edge) and a bad loop at
s1− s2; so this component has one maximal independent set. The component in Γ of any
x ∈ B\{y, s1−s2,−s1−s2} is the graph K2�K3 as represented in Figure 3. In particular,
if x is not a vertex in the component of y, then one can check that all vertices in Figure 3
are distinct.

Then Γ consists of the component of y and (|B|−3)/6 disjoint copies of K2�K3. Since

mis(K2�K3) = 6, mis(Γ) = 6(|B|−3)/6 = 6n/18
√

6
< 30.1n.

x s2 − x

s1 + x

−s1 + x

−s1 + s2 − x

s1 + s2 − x
Figure 3 - The graph K2�K3.

Case 3: S = {s1, s2} with s1, s2 ∈ H, s1 6= s2 and s1 6= −s2. In this case there is no loop in Γ.
The component of any x ∈ B in Γ is represented in Figure 4. Then Γ consists of |B|/9
disjoint copies of this graph. Since it has 6 maximal independent sets, mis(Γ) = 6|B|/9 =

6n/27 < 30.1n.

x

x− s2

x + s2

x− s1 x + s1

x− s1 + s2 x + s1 + s2

x− s1 − s2 x + s1 − s2

Figure 4 - The network Z2
3.

�

Claim 4.6. f0
max(G) + f1

max(G) + f2
max(G) ≤ o(1) · 3n/9.
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Proof. This follows analogously to the proof of Claim 3.7 where now we apply Claims 4.1, 4.3, 4.4
and 4.5 together with Lemma 2.3. �

Claim 4.7. f3
max(G) ≤

(
(n−3)(n−1)

3 + o(1)
)
· 3n/9

Proof. Similarly to the proof of Claim 3.8, it suffices to sum up the number of maximal independent
sets in link graphs of the form L{s}[g +H] where dim(H) = k − 1, g /∈ H and {s} ⊆ H ∪ (2g +H)
is a sum-free singleton (so any singleton except {0}).

Let {s} ⊆ H ∪ (2g + H) be such a singleton and B = g + H. We will distinguish two cases
depending on which set s belongs to.

• If s ∈ 2g + H then there is one loop in Γ at y ∈ B such that 2y = s and Γ consists of
a perfect matching between the (|B| − 1)/2 pairs {x, s − x} with x 6= y. Then mis(Γ) =

2(|B|−1)/2 = 2n/6√
2

.

• If s ∈ H then Γ consists of |B|/3 disjoint triangles of the form {x − s, x, x + s}; thus

mis(Γ) = 3|B|/3 = 3n/9.

Now we want to count precisely how many pairs (g+H, {s}) we have. Since there are (n− 1)/2
(k− 1)-dimensional subspaces of G, we have (n− 1)/2 choices for H and two choices for the coset.
Once g +H is fixed, we have |H\{0}| = n/3− 1 choices for s ∈ H and |2g +H| = n/3 choices for
s ∈ 2g +H. As we do not mind over-counting for now, we conclude that

f3
max(G) ≤ (n− 1)(n/3− 1) · 3n/9 +

n(n− 1)

6
√

2
· 2n/6 =

(
(n− 3)(n− 1)

3
+ o(1)

)
3n/9.

�

Combining Claims 4.6 and 4.7 gives us the upper bound

fmax(G) ≤ f0
max(G) + f1

max(G) + f2
max(G) + f3

max(G) ≤
(

(n− 3)(n− 1)

3
+ o(1)

)
· 3n/9.

4.2. Lower bound. Given a coset g +H and s ∈ H\{0} where dim(H) = k − 1, we define when
(g + H, {s}) generates a maximal sum-free subset of G analogously to Section 3.2. Similar to the
behaviour for Zk2, type 3 maximal sum-free sets generated by a pair (g + H, {s}) with s ∈ H\{0}
are those that contribute to the dominant term in the asymptotic development of fmax(G).

Claim 4.8. Consider any coset B = g + H with H ⊆ G a (k − 1)-dimensional subspace; g /∈ H
and any singleton {s} ⊆ H\{0}. Then (B, {s}) generates at least 3n/9− (2n/3− 2) · 30.1n maximal
sum-free sets.

Proof. We fix B = g+H with dim(H) = k− 1 and g /∈ H, and s ∈ H\{0}. We saw in the proof of

Claim 4.7 that L{s}[B] has 3n/9 maximal independent sets. Let I ⊆ B be a maximal independent
set in L{s}[B] and suppose that {s} ∪ I is not a maximal sum-free set in G; call such an I bad.
Then there exists s′ ∈ H\{0, s} ∪ (2g + H) such that {s, s′} ∪ I is sum-free (s′ cannot belong to
B otherwise I would not be a maximal independent set). So I is a maximal independent set in
L{s,s′}[B]. By Claim 4.5, there are at most 30.1n maximal independent sets in L{s,s′}[B]. Since

there are 2n/3− 2 possibilities for s′, in total there are at most (2n/3− 2) · 30.1n bad I. The claim
immediately follows. �

As in Claim 3.10, there are only a few maximal sum-free sets generated by two distinct pairs
(g +H, {s}).

Claim 4.9. Given distinct pairs (B, {s}), (B′, {s′}) there are at most n/9 maximal sum-free subsets
of G generated by both pairs.
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Proof. Let (B, {s}) = (g +H, {s}) and (B′, {s′}) = (g′ +H ′, {s′}) be two distinct such pairs.

• IfH = H ′ and g+H = g′+H ′ then necessarily s 6= s′ and so maximal sum-free sets generated
by these pairs differ by at least one element. If H = H ′ and g + H = 2g′ + H ′ = 2g′ + H
then B ∩B′ = ∅ so maximal sum-free sets generated by these pairs are distinct.
• If H 6= H ′ then |B ∩B′| ≤ n/9. Indeed, since B and B′ are cosets, B ∩B′ is either empty

or is a coset of a subspace of co-dimension two.
Since the maximal sum-free sets generated by (B, {s}) (resp. (B′, {s′})) consist of n/9

elements of B (resp. B′) plus s (resp. s′), we can conclude similarly to the second point
in the proof of Claim 3.10 that there are at most n/9 maximal sum-free sets generated by
both pairs.

�

As there are
(

(n−3)(n−1)/3
2

)
couples of such pairs, we over-count only a number of maximal sum-

free sets which is polynomial in n, and so o(1) · 3n/9. Altogether we have that

fmax(G) ≥ (n− 3)(n− 1)

3
(3n/9 − (2n/3− 2) · 30.1n)− o(1) · 3n/9

=

(
(n− 3)(n− 1)

3
− o(1)

)
3n/9.

5. Lower bound construcions

In this section we provide constructions to confirm the lower bound in Conjecture 1.4 for a range
of groups.

5.1. Groups with a large cyclic component. In [3, Proposition 5.4] the authors give a con-
struction which confirms Conjecture 1.4 for the cyclic group Zm. We will extend it to groups that
have a large cyclic component.

Lemma 5.1. Let m ≥ 9 be an integer. For any n-order abelian group G of the form G = Zm ×K
we have

fmax(G) ≥ (2/3)1+n/m · 6( 1
18
− 4

9m
)n.

Proof. Consider the following construction for Zm. We write m = 9k + i with 0 ≤ i ≤ 8. We set
B := [3k + 1, 6k] and S := {k,−2k}. Note both B and S are sum-free.

Let us first assume that i ≥ 1. The link graph Γ := LS [B] can have four different shapes
depending on the parities of i − 1 and k − i + 1. When k − i + 1 is even, for any x ∈ [3k + i, 4k],
x 6= −x− 2k, so its component in Γ is the graph K2�K3, as shown in Figure 5. When k − i+ 1 is
odd, we have the same situation except when x = 3k+ i+ k−i

2 whose component is a triangle with

a type 2 loop at one vertex, since 2(3k+ i+ k−i
2 ) = −2k. We call this graph represented in Figure 7

a looped triangle. Similarly, when i − 1 is even, the component of any x ∈ [3k + 1, 3k + i − 1] is a
K2�K3 as shown in Figure 6. It is identical when i−1 is odd except for 3k+ i/2 whose component
is a looped triangle as shown in Figure 8. Note also there is always a bad loop at 5k+ i = −2k−2k
which belongs to a K2�K3 component.

We are now able to compute Γ, Γ′ and Γ1 o Γ2 in each of those four cases. We do it here when
i− 1 and k− i+ 1 are both odd, the three other cases are similar. From the previous observations
we deduce that Γ consists of k/2− 2 vertex-disjoint copies of K2�K3, one copy of K2�K3 with a
bad loop at one vertex and two looped triangles. Then Γ′ is identical to Γ but without the bad loop;
from Figures 5-8 we deduce that Γ1 oΓ2 consists of k copies of K2�K3. Indeed, when Λ = K2�K3

as in Figures 5 and 6, Λ1 o Λ2 consists of 2 vertex-disjoint copies of K2�K3; when Λ is a looped
triangle as in Figures 7 and 8, Λ1 o Λ2 is K2�K3.
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Moreover K2�K3 has 6 maximal independent sets, K2�K3 with a loop at one vertex has 4 and
a looped triangle has 2. Thus mis(Γ) = 6k/2−2 · 4 · 22, mis(Γ′) = 6k/2−1 · 22 and mis(Γ1 o Γ2) = 6k.

Define a, Γ̃, S̃ and B̃ as in Lemma 2.10. Then by Lemma 2.10,

mis(Γ̃) = 6k/2−2 · 4 · 22 · 6(k/2−1)(a−1) · 22(a−1) · 6
k
2

(|K|−a)

= (4/6)a+1 · 6
k
2
|K| ≥ (2/3)|K|+1 · 6

m−i
18
|K|

≥ (2/3)|K|+1 · 6
m−8

18
|K| = (2/3)n/m+1 · 6( 1

18
− 4

9m
)n.

A maximal independent set I in Γ̃ is such that I ∪ S̃ is sum-free, but it might not be maximal.
However no further element from B̃ can be added. Hence two distinct maximal independent sets I,
I ′ in Γ̃ are such that I ∪ S̃ and I ′ ∪ S̃ lie in two distinct maximal sum-free subsets of G. Therefore
we have fmax(G) ≥ mis(Γ̃) ≥ (2/3)1+n/m · 6( 1

18
− 4

9m
)n. We obtain greater or equal bounds in the

other three cases.

x+ k

−x

x

x+ 2k

−x− 2k

−x− k

Figure 5 - The component of
x ∈ [3k + i, 4k].

x+ k

−x− 3k

x

x+ 2k

−x− 2k

−x− k

Figure 6 - The component of
x ∈ [3k + 1, 3k + i− 1].

4k + i + k−i
2

5k + i + k−i
2

3k + i + k−i
2

Figure 7 - The component of 3k + i+ k−i
2 .

3k + i/24k + i/2

5k + i/2

Figure 8 - The component of 3k + i/2.

Type 1 edges are represented in blue and type 2 edges in red. Edges that are both type 1 and
type 2 are represented by red and blue dashed lines.

Let us now assume i = 0. When k is even, Γ contains k/2− 1 disjoint copies of K2�K3; indeed
the component of every x ∈ [3k+1, 4k−1]\{3k+k/2} is as in Figure 5. The other two components
of Γ are: a looped triangle {3k + k/2, 4k + k/2, 5k + k/2} with a type 2 loop at 3k + k/2, a type 2
edge between 4k+k/2 and 5k+k/2 and all possible (non-loop) type 1 edges; a triangle {4k, 5k, 6k}
with a loop at 5k (which is both bad and type 2) and a bad loop at 6k, where all non-loop edges of
the triangle are type 1, except that additionally the edge between 4k and 6k is also type 2. Note
that mis(Γ) = 2 · 6k/2−1, mis(Γ′) = 4 · 6k/2−1 and mis(Γ1 o Γ2) = 6k. Then by Lemma 2.10,

mis(Γ̃) = 2 · 6k/2−1 · 4a−1 · 6(k/2−1)(a−1) · 6
k
2

(|K|−a)

=
1

2
· (2/3)a · 6

k
2
|K| ≥ 1

2
· (2/3)|K| · 6

m
18
|K| ≥ (2/3)n/m+1 · 6( 1

18
− 4

9m
)n.

When k is odd, Γ consists of (k − 1)/2 copies of K2�K3 and the triangle {4k, 5k, 6k} with two

loops as in the k even case. Therefore, mis(Γ) = 6(k−1)/2, mis(Γ′) = 2 · 6(k−1)/2 and mis(Γ1 oΓ2) =
14



6k. Each of these terms are at least as big as the corresponding terms in the k even case, so again

by Lemma 2.10 we conclude that mis(Γ̃) ≥ (2/3)n/m+1 · 6( 1
18
− 4

9m
)n. Therefore, arguing as before,

in both cases fmax(G) ≥ mis(Γ̃) ≥ (2/3)1+n/m · 6( 1
18
− 4

9m
)n, as desired. �

This lemma now easily allows us to confirm the lower bound in Conjecture 1.4 for groups which
have a sufficiently large cyclic component.

Proposition 5.2. Let G be an n-order abelian group. If there exists m ≥ 3084 and an abelian
group K such that G = Zm ×K, then fmax(G) ≥ 2n/7.

Proof. Provided n ≥ m ≥ 3084, then by Lemma 5.1,

fmax(G) ≥ (2/3)1+n/m · 6( 1
18
− 4

9m
)n ≥ 2n/7.

�

5.2. Some type III groups. Amongst all abelian groups of order n, Theorem 2.2 tells us that
the smallest values of µ(G) are obtained by type III groups. So one might think they are the most
likely groups to disprove the lower bound in Conjecture 1.4. However, in this subsection we give
lower bound constructions for some type III groups.

Proposition 5.3. Let G be a type III group of order n and let m be its exponent. If m ∈ {7, 13, 19},
then fmax(G) ≥ 2µ(G)/2−2 ≥ 2n/7−2.

Proof. If m = 7 then G = Zk7; Proposition 5.7 in [3] gives that fmax(G) ≥ 2µ(G)/2−1 = 2n/7−1

in this case. If m = 13, let H < G be a subgroup of G of index 13 and x ∈ 3 + H. Let
T := (1 +H) ∪ (4 +H) ∪ (6 +H) ∪ (9 +H) be a sum-free set of size 4n/13 and consider the link
graph Γ := L{x}[T ]. Then there is a loop at 2x ∈ 6 + H, and the remaining edges of Γ form a
perfect matching between the elements of 1 + H and those of 4 + H and between those of 6 + H
and those of 9 + H. Thus mis(Γ) = 22n/13−1 and fmax(G) ≥ 22n/13−1 = 2µ(G)/2−1. If m = 19
then let H < G be a subgroup of index 19 and x ∈ 6 + H. By considering the sum-free set
T := (1 +H)∪ (3 +H)∪ (12 +H)∪ (14 +H)∪ (16 +H)∪ (18 +H) and the link graph Γ := L{x}[T ]

we obtain that mis(Γ) = 23n/19−2 (there is a loop at 2x ∈ 12 + H and another one at the unique

y ∈ 3 +H such that 2y = x), thus, fmax(G) ≥ 23n/19−2 = 2µ(G)/2−2. �

6. Concluding remarks and open problems

6.1. Structural results and sharp bounds on fmax(G). In this paper we have provided a sharp
count on the number of maximal sum-free sets in both Zk2 and Zk3. Crucial ingredients of both these
proofs were structural results for ‘large’ sum-free subsets of Zk2 [6, 8] and Zk3 [15]. To obtain sharp
bounds on fmax(G) in general, further such structural results will be needed. Lemma 5.6 in [12]
provides a structural result for large sum-free subsets of type I groups (and was applied to obtain
bounds on fmax(G) in [16]). However, our understanding of how fmax(G) should behave in general
is still rather limited. Thus, it is unclear how precise structural results need to be for applications to
the fmax(G) problem. Perhaps the next natural question to consider is to determine the asymptotic
behaviour of fmax(Zkp) when p ≥ 5 is prime.

6.2. Counting complete caps in projective spaces. Let PG(n, q) be the projective space of
dimension n over the Galois field Fq. An `-cap is a set of ` points no three of which are collinear. An
`-cap is said to be complete if it is not contained in an (`+ 1)-cap. Complete caps are well-studied
objects, for example, the size of the smallest complete cap in a projective space (see e.g. [14]) and
the spectrum of values of ` for which there is a complete `-cap (see e.g. [7]).

In this setting note that a maximal sum-free set in Zk+1
2 is precisely a complete cap in PG(k, 2).

Thus, Theorem 1.2 asymptotically determines the number of complete caps in PG(k, 2). It would
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be interesting to obtain analogous counting results for other projective spaces. Furthermore, it
would be interesting to attack other open problems on complete caps in PG(k, 2) (such as those

in [7, Section 8]) by instead working in the setting of maximal sum-free sets in Zk+1
2 .

6.3. Maximal distinct sum-free sets. Let G be an abelian group of order n. We call a triple
{x, y, z} ⊆ G a distinct Schur triple if it is a Schur triple and its three elements are distinct. A subset
S ⊆ G is a distinct sum-free set if it does not contain any distinct Schur triple. A distinct sum-free
set S is a maximal distinct sum-free set if S is not properly contained in another distinct sum-free
subset of G. Denote by µ?(G) the size of a largest distinct sum-free subset of G. We write f?(G)
for the number of distinct sum-free subsets of G and f?max(G) for the number of maximal distinct
sum-free subsets of G. Note that an important feature of distinct sum-free sets in comparison with
sum-free sets is that they can contain the zero element. Moreover, we immediately have that a
sum-free set is a distinct sum-free set. Also, if A ⊆ G is a distinct sum-free subset of G, it can
be written as A = B ∪ C with B sum-free and |C| = o(n). Indeed, A\{0} (or A if 0 /∈ A) has at
most n − 1 = o(n2) Schur triples, because such a Schur triple is necessarily of the form {x, x, 2x}
and there are |A\{0}| ≤ n − 1 choices for x ∈ A\{0}. Therefore, by Green’s removal lemma [11,
Theorem 1.4], A\{0} can be made sum-free by removing o(n) elements, and so A can be made
sum-free by removing at most o(n) + 1 = o(n) elements. It follows from this observation that

(6.1) µ(G) ≤ µ?(G) ≤ µ(G) + o(n)

and

(6.2) f(G) ≤ f?(G) ≤ 2o(n)f(G).

It is natural to guess that fmax(G) ≤ f?max(G) for all finite abelian groups G. However, this seems
more challenging to prove than (6.1) and (6.2). Indeed, a maximal sum-free set is not necessarily
a maximal distinct sum-free set, and we can even have two maximal sum-free sets that lie in the
same maximal distinct sum-free set.

Example 6.1. In G = Z7, {2, 3} and {3, 4} are two maximal sum-free sets that lie in the same
maximal distinct sum-free set {2, 3, 4}. However, we still have fmax(Z7) = 9 < f?max(Z7) = 14.

This observation motivates the following question.

Question 6.2. Are there some abelian groups G for which f?max(G) < fmax(G)?

From the perspective that a group answering Question 6.2 positively would perhaps be an ex-
ception, one can wonder in general if fmax(G) is much smaller than f?max(G).

Question 6.3. For which abelian groups G is fmax(G) exponentially smaller than f?max(G)?

We will demonstrate examples of abelian groups G for which the behaviour in Question 6.3 does
occur by giving a lower bound on f?max(G). For this we need to modify our definition of the link
graph to fit the concept of distinct sum-free sets. For subsets B,S ⊆ G let L?S [B] be the distinct
link graph of S on B defined as follows. Its vertex set is B and its edge set consists of the following
edges:

(i) two distinct vertices x, y ∈ B are adjacent if there exists s ∈ S such that {x, y, s} is a
distinct Schur triple;

(ii) there is a loop at a vertex x ∈ B if there exist distinct s, s′ ∈ S such that {x, s, s′} is a
distinct Schur triple.

We will use distinct link graphs to provide lower bound constructions on f?max(G) for finite
abelian groups G. Speaking of which, note that if B,S ⊆ G are disjoint distinct sum-free subsets
of G, we have that any two maximal independent sets I, I ′ in L?S [B] are such that I ∪ S and I ′ ∪ S
lie in two different maximal distinct sum-free subsets of G, because no more elements from B can
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be added to either without destroying the distinct sum-free property. Thus, for such B and S we
have

(6.3) f?max(G) ≥ mis(L?S [B]).

Proposition 6.4. For any finite abelian group G which is not of the form G = Zk2 ×K with k ≥ 1

and |K| ≥ 3 odd, we have f?max(G) ≥ 2
µ(G)−1

2 .

Proof. We first assume that |G| is odd. If G is type I(p), with p 6= 2 and p ≡ 2 (mod 3), then by

Theorem 2.2, µ(G) = |G|
(

1
3 + 1

3p

)
. Let H < G be a subgroup of index p and g /∈ H such that

the cosets of H are H, g + H,. . . ,(p− 1)g + H. As in [9, Theorem 2] we consider T := (g + H) ∪
(4g +H) ∪ . . . ∪ ((p− 1)g +H). Note that T is sum-free and has size |T | = p+1

3 |H| = µ(G). Then
Γ := L?{0}[T ] matches perfectly the elements of ig+H with those of −ig+H, for i = 1, 4, . . . , p−1;

since p is an odd prime number congruent to 2 (mod 3), the number of cosets (p + 1)/3 is even.

Thus, Γ is a perfect matching and so by (6.3), f?max(G) ≥ mis(Γ) = 2µ(G)/2.
If G is type II, by Theorem 2.2, µ(G) = |G|/3. We give a construction similar to [3, Proposition

5.6]. Let H < G be a subgroup of index 3. Then there are three cosets: H, 1 +H and 2 +H. Let
T := 1 + H, x ∈ 2 + H and Γ := L?{x}[T ]. Note there is no loop at 2x ∈ T because {x, x, 2x} is

not a distinct Schur triple. Further, in the case where y0 = x − y0 (which happens for a unique
y0 ∈ T since |G| is odd), y0 is an isolated vertex. All other y ∈ 1 +H have a unique neighbour in

Γ, namely x− y. Then by (6.3), f?max(G) ≥ mis(Γ) = 2(|T |−1)/2 = 2(µ(G)−1)/2.
If G is type III, then by Theorem 2.2, µ(G) = |G|

(
1
3 + 1

3m

)
where m is the largest order of any

element of G. Let g ∈ G be an element of order m and H < G a subgroup of index m such that its
cosets are H,g + H,. . . ,(m − 1)g + H. Note that as G is type III, m is odd and m ≡ 1 (mod 3).
As in [9, Theorem 5] we consider T := (2g +H) ∪ (5g +H) ∪ . . . ∪ ((m− 2)g +H). Note that T is
sum-free and has size |T | = m−1

3 |H| = µ(G). Similarly to the case of type I groups, Γ := L?{0}[T ] is

a perfect matching. Thus by (6.3), f?max(G) ≥ mis(Γ) = 2µ(G)/2.

Now we suppose that |G| is even. In this case, by Theorem 2.2, µ(G) = |G|/2. Since G is not
of the form Zk2 × K with |K| ≥ 3 odd, either G = Z2α × K for some K and α ≥ 2, or G = Zk2.
In the first case, consider T := {1, 3, . . . , 2α − 1} × K. Then Γ := L?{0}[T ] is a perfect matching

between the elements (a, k) and (−a,−k) with a ∈ {1, 3, . . . , 2α − 1}, k ∈ K. Since α ≥ 2, a 6= −a
for all a ∈ {1, 3, . . . , 2α − 1}. Thus by (6.3), f?max(G) ≥ mis(Γ) = 2|T |/2 = 2µ(G)/2. When G = Zk2,
note there is a one-to-one correspondence between the maximal sum-free sets of G and the maximal
distinct sum-free sets of G. Indeed, since 2x = 0 for all x ∈ G, a Schur triple which does not contain
the zero element is a distinct Schur triple. Conversely, a distinct Schur triple cannot contain the
zero element. Thus, A 7→ A∪{0} is a bijection between the maximal sum-free subsets of G and the

maximal distinct sum-free subsets of G. Hence f?max(Zk2) = fmax(Zk2) ≥ 2µ(Zk2)/2, where the latter
inequality was proven in [3, Proposition 5.3]. �

Proposition 6.5. Let G be an abelian group of order n of the form G = Zk2 ×K with k ≥ 1 and

|K| ≥ 3 odd and let a := 2k−1. Then f?max(G) ≥ 2( 1
2
− a
n

)µ(G).

Proof. Recall that by Theorem 2.2 we know µ(G) = n/2. Let q ≥ 3 be an odd number and K ′ be
a group such that q||K| and K = Zq ×K ′. Then G can be written as G = Zm ×G′ with m := 2q

and G′ := Zk−1
2 ×K ′. We consider T := {1, 3, . . . ,m− 1}×G′ which is sum-free, and Γ := L?{0}[T ].

Then each element of T of the form (b, g′) with b ∈ {1, 3, . . . ,m − 1}\{m/2} and g′ ∈ G′ has a
unique neighbour in Γ distinct from themselves, namely (−b,−g′). Since m/2 is odd, for all g′ ∈ G′,
(m/2, g′) ∈ T . So if g′ ∈ G′ is such that g′ 6= −g′, then (m/2, g′) also has a unique neighbour in
Γ different from themselves; otherwise it is an isolated vertex. As G′ has a elements g′ such that
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g′ = −g′,
mis(Γ) = 2

m/2−1
2
|G′|+ |G

′|−a
2 = 2

n
4
−a

2 = 2( 1
2
− a
n

)µ(G),

and by (6.3), f?max(G) ≥ 2( 1
2
− a
n

)µ(G). �

In [16, Theorem 3.2], Liu and Sharifzadeh proved that there is a constant c > 10−4 such that for
all even order abelian groups G that have a negligible number of order-2 elements (e.g. a = o(n)

in Proposition 6.5) we have fmax(G) < 2(1/2−c)µ(G) for sufficiently large |G|. This result combined
with Propositions 6.4 and 6.5 gives a positive answer to Question 6.3 for those abelian groups. We
also know there are some groups for which the answer to this question is negative. Indeed, we saw
in the proof of Proposition 6.4 that f?max(Zk2) = fmax(Zk2).
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