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Abstract. Böttcher, Schacht and Taraz [7] gave a condition on the minimum degree of a graph G
on n vertices that ensures G contains every r-chromatic graph H on n vertices of bounded degree
and of bandwidth o(n), thereby proving a conjecture of Bollobás and Komlós [18]. We strengthen
this result in the case when H is bipartite. Indeed, we give an essentially best-possible condition
on the degree sequence of a graph G on n vertices that forces G to contain every bipartite graph
H on n vertices of bounded degree and of bandwidth o(n). This also implies an Ore-type result.
In fact, we prove a much stronger result where the condition on G is relaxed to a certain robust
expansion property. Our result also confirms the bipartite case of a conjecture of Balogh, Kostochka
and Treglown [2] concerning the degree sequence of a graph which forces a perfect H-packing.

1. Introduction

A central problem in graph theory is to establish conditions on a graph G which ensure that
G contains another graph H as a spanning subgraph. Perhaps the best-known example of such a
problem is when H is a Hamilton cycle. Dirac’s theorem [12] states that any graph G on n vertices
with minimum degree δ(G) ≥ n/2 contains a Hamilton cycle. The Pósa–Seymour conjecture
(see [13] and [28]) states that any graph G on n vertices with δ(G) ≥ rn/(r + 1) contains the
rth power of a Hamilton cycle. (The rth power of a Hamilton cycle C is obtained from C by
adding an edge between every pair of vertices of distance at most r on C.) Komlós, Sárközy and
Szemerédi [20] proved this conjecture for sufficiently large graphs.

There has also been significant attention on establishing minimum degree conditions which ensure
a graph contains a perfect H-packing : Given a graph H, a perfect H-packing in a graph G is a
collection of vertex-disjoint copies of H which covers all the vertices in G. (Perfect H-packings
are also referred to as H-factors or perfect H-tilings.) A seminal result in the area is the Hajnal–
Szemerédi theorem [14] which states that every graph G whose order n is divisible by r contains a
perfect Kr-packing provided that δ(G) ≥ (r − 1)n/r. (Corrádi and Hajnal [10] had earlier proved
this result in the case when r = 3.) Notice that in the case when r + 1 divides |G|, a necessary
condition for a graph G to contain the rth power of a Hamilton cycle is that G contains a perfect
Kr+1-packing. Thus, the Pósa–Seymour conjecture implies the Hajnal–Szemerédi theorem. Kühn
and Osthus [23, 24] characterised, up to an additive constant, the minimum degree which ensures a
graph G contains a perfect H-packing for an arbitrary graph H. (This improved previous bounds
of Alon and Yuster [1] and Komlós, Sárközy and Szemerédi [21].)

It is desirable to find conditions that ensure a graph G contains H as a spanning subgraph where
H is any graph from a large collection of graphs. That is, rather than finding individual results for
specific graphs H, one seeks more general, wide-reaching results. A graph H on n vertices is said
to have bandwidth at most b, if there exists a labelling of the vertices of H by the numbers 1, . . . , n
such that for every edge ij ∈ E(H) we have |i − j| ≤ b. Clearly every graph H has bandwidth
at most |H| − 1. Thus, a perfect H-packing has bandwidth at most |H| − 1. Further, a Hamilton
cycle has bandwidth 2, and in general the rth power of a Hamilton cycle has bandwidth at most
2r. Böttcher, Preussmann, Taraz and Würfl [5] proved that every planar graph H on n vertices
with bounded maximum degree has bandwidth at most O(n/ log n).
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The following result of Böttcher, Schacht and Taraz [7] gives a condition on the minimum degree
of a graph G on n vertices that ensures G contains every r-chromatic graph on n vertices of bounded
degree and of bandwidth o(n), thereby proving a conjecture of Bollobás and Komlós [18].

Theorem 1 (Böttcher, Schacht and Taraz [7]). Given any r,∆ ∈ N and any γ > 0, there exist
constants β > 0 and n0 ∈ N such that the following holds. Suppose that H is an r-chromatic graph
on n ≥ n0 vertices with ∆(H) ≤ ∆ and bandwidth at most βn. If G is a graph on n vertices with

δ(G) ≥
(
r − 1

r
+ γ

)
n,

then G contains a copy of H. �

Prior to the proof of Theorem 1, Csaba [11] and Hàn [15] proved the case when H is bipartite
and Böttcher, Schacht and Taraz [6] proved the case when χ(H) = 3. In this paper our focus is on
strengthening Theorem 1 in the case when H is bipartite.

1.1. Degree sequence conditions. Dirac’s theorem and the Hajnal–Szemerédi theorem are best
possible in the sense that the minimum degree conditions in both these results cannot be lowered.
However, this does not mean that one cannot strengthen these results. Indeed, Chvátal [9] gave a
condition on the degree sequence of a graph which ensures Hamiltonicity: Suppose that the degrees
of the graph G are d1 ≤ · · · ≤ dn. If n ≥ 3 and di ≥ i+ 1 or dn−i ≥ n− i for all i < n/2 then G is
Hamiltonian. Notice that Chvátal’s theorem is much stronger than Dirac’s theorem since it allows
for almost half of the vertices of G to have degree less than n/2.

Balogh, Kostochka and Treglown [2] proposed the following two conjectures concerning the degree
sequence of a graph which forces a perfect H-packing.

Conjecture 2 (Balogh, Kostochka and Treglown [2]). Let n, r ∈ N such that r divides n. Suppose
that G is a graph on n vertices with degree sequence d1 ≤ · · · ≤ dn such that:

• di ≥ (r − 2)n/r + i for all i < n/r;
• dn/r+1 ≥ (r − 1)n/r.

Then G contains a perfect Kr-packing.

Note that Conjecture 2, if true, is much stronger than the Hajnal–Szemerédi theorem since the
degree condition allows for n/r vertices to have degree less than (r − 1)n/r.

Conjecture 3 (Balogh, Kostochka and Treglown [2]). Suppose γ > 0 and H is a graph with
χ(H) = r. Then there exists an integer n0 = n0(γ,H) such that the following holds. If G is a graph
whose order n ≥ n0 is divisible by |H|, and whose degree sequence d1 ≤ · · · ≤ dn satisfies

• di ≥ (r − 2)n/r + i+ γn for all i < n/r,

then G contains a perfect H-packing.

In this paper we prove the following result which gives a condition on the degree sequence of
a graph G on n vertices that ensures G contains every bipartite graph on n vertices of bounded
degree and of bandwidth o(n).

Theorem 4. Given any ∆ ∈ N and any γ > 0, there exists constants β > 0 and n0 ∈ N such that
the following holds. Suppose that H is a bipartite graph on n ≥ n0 vertices with ∆(H) ≤ ∆ and
bandwidth at most βn. Let G be a graph on n vertices with degree sequence d1 ≤ · · · ≤ dn. If

• di ≥ i+ γn or dn−i−γn ≥ n− i for all i < n/2

then G contains a copy of H.
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The degree sequence condition in Theorem 4 is similar to that in Chvátal’s theorem, except that
now we have two error terms in the condition. Notice that Theorem 4 is much stronger than the
bipartite case of Theorem 1. Furthermore, in the case when r = 2, Conjecture 3 is implied by
Theorem 4.

Theorem 4 is, up to the error terms, best-possible for many graphs H. Indeed, suppose that H
is a bipartite graph on an even number n of vertices that contains a perfect matching. Suppose
that m ∈ N such that m < n/2. Let G be a graph on n vertices with vertex classes V1, V2, V3 of
sizes m, m− 1 and n− 2m+ 1 respectively and whose edge set contains all possible edges except
for those in V1 and between V1 and V3. Let d1 ≤ · · · ≤ dn denote the degree sequence of G. Then

• di ≥ i− 1 and dn−i+2 ≥ n− i for all i < n/2,

but since |V1| > |V2|, G does not contain a perfect matching and therefore H.

1.2. Ore-type degree conditions. Ore-type degree conditions consider the sum of the degrees
of non-adjacent vertices of a graph. The name comes from Ore’s theorem [27], which states that
a graph G of order n ≥ 3 contains a Hamilton cycle if d(x) + d(y) ≥ n for all non-adjacent
x 6= y ∈ V (G). Recently, Châu [8] proved an Ore-type analogue of the Pósa–Seymour conjecture
in the case of the square of a Hamilton cycle (i.e. when r = 2).

The following Ore-type result of Kierstead and Kostochka [17] implies the Hajnal–Szemerédi
theorem: Let n, r ∈ N such that r divides n. Suppose that G is a graph on n vertices such that
for all non-adjacent x 6= y ∈ V (G), d(x) + d(y) ≥ 2(r − 1)n/r − 1. Then G contains a perfect
Kr-packing. Kühn, Osthus and Treglown [25] characterised, asymptotically, the Ore-type degree
condition which ensures a graph G contains a perfect H-packing for an arbitrary graph H.

It is natural to seek an Ore-type analogue of Theorem 1. The following result provides such an
analogue in the case when H is bipartite.

Theorem 5. Given any ∆ ∈ N and any γ > 0, there exists constants β > 0 and n0 ∈ N such that
the following holds. Suppose that H is a bipartite graph on n ≥ n0 vertices with ∆(H) ≤ ∆ and
bandwidth at most βn. Let G be a graph on n vertices such that, for all non-adjacent x 6= y ∈ V (G),

d(x) + d(y) ≥ (1 + γ)n.

Then G contains a copy of H.

In Section 2.2 we show that Theorem 5 is a direct consequence of Theorem 4. Note that The-
orem 5 is best-possible up to the error term for bipartite graphs H on n vertices which do not
contain an isolated vertex. Indeed, let G consist of a copy of Kn−1 and an isolated vertex. Then G
does not contain H but d(x) + d(y) = n− 2 for all non-adjacent x 6= y ∈ V (G).

In light of Theorem 5, we propose the following Ore-type analogue of Theorem 1.

Conjecture 6. Given any r,∆ ∈ N and any γ > 0, there exists constants β > 0 and n0 ∈ N
such that the following holds. Suppose that H is an r-chromatic graph on n ≥ n0 vertices with
∆(H) ≤ ∆ and bandwidth at most βn. Let G be a graph on n vertices such that, for all non-
adjacent x 6= y ∈ V (G),

d(x) + d(y) ≥ 2

(
r − 1

r
+ γ

)
n.

Then G contains a copy of H.

If true, Conjecture 6 is stronger than Theorem 1. Böttcher and Müller [3, 4] have proved the
conjecture in the case when r = 3.
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1.3. Robustly expanding graphs. An important and well-studied notion in graph theory is
graph expansion. We will consider the following stronger notion of ‘robust expansion’. Roughly
speaking, a graph G on n vertices is a robust expander if, for every ‘reasonably sized’ set S ⊆ V (G),
G contains at least |S| + o(n) vertices that are adjacent to ‘many’ vertices in S. More formally,
let 0 < ν ≤ τ < 1. Suppose that G is a graph on n vertices and S ⊆ V (G). Then the ν-robust
neighbourhood RNν,G(S) of S is the set of vertices v ∈ V (G) such that |N(v) ∩ S| ≥ νn. We
say that G is a robust (ν, τ)-expander if every S ⊆ V (G) with τn ≤ |S| ≤ (1 − τ)n satisfies
|RNν,G(S)| ≥ |S|+ νn.

The notion of robustly expanding (di)graphs was first introduced by Kühn, Osthus and Treglown
in [26]. The following result is an immediate consequence of Theorem 16 from [26].

Theorem 7 (Kühn, Osthus and Treglown [26]). Given positive constants ν ≤ τ � η < 1 there
exists a positive integer n0 such that the following holds. Let G be a graph on n ≥ n0 vertices with
δ(G) ≥ ηn which is a robust (ν, τ)-expander. Then G contains a Hamilton cycle. �

(Throughout the paper, we write 0 < α � β � γ to mean that we can choose the constants
α, β, γ from right to left. More precisely, there are increasing functions f and g such that, given γ,
whenever we choose some β ≤ f(γ) and α ≤ g(β), all calculations needed in our proof are valid.
Hierarchies of other lengths are defined in the obvious way.)

We will use Theorem 7 to prove the following result concerning embedding bipartite graphs of
small bandwidth.

Theorem 8. Given ∆ ∈ N and positive constants ν ≤ τ � η < 1 there exist constants β > 0
and n0 ∈ N such that the following holds. Suppose that H is a bipartite graph on n ≥ n0 vertices
with ∆(H) ≤ ∆ and bandwidth at most βn. Let G be a graph on n vertices with δ(G) ≥ ηn which
is a robust (ν, τ)-expander. Then G contains a copy of H.

In Section 2.2 we show that Theorem 8 implies Theorem 4 and that Theorem 4 implies Theorem 5.
Thus, we only prove Theorem 8 directly.

Note that Theorem 8 is very general in the sense that it allows for the graph G to have small
minimum degree (although δ(G) must be linear). Furthermore, there are examples of graphs G
that satisfy the hypothesis of Theorem 8 and whose maximum degree is also small. Indeed, let
0 < ν � τ � η < 1 such that 1/η is an odd integer. Further choose n ∈ N such that ηn ∈ N.
Define G to be the blow-up of a cycle on 1/η vertices, such that each vertex class of G contains
ηn vertices. Thus, |G| = n and δ(G) = ∆(G) = 2ηn. It is easy to check that G is a robust
(ν, τ)-expander. Given constants 0 < ν � τ � p < 1, with high probability G(n, p) is a robust
(ν, τ)-expander with minimum degree at least pn/2 and maximum degree at most 2pn.

Theorem 8 therefore implies that, with high probability, G(n, p) contains all bipartite graphs H
on n vertices of bounded degree and bandwidth o(n). A result of Huang, Lee and Sudakov [16]
actually implies that, with high probability, any spanning subgraph G′ of G(n, p) with minimum
degree δ(G′) ≥ (1/2 + o(1))np contains all such H.

2. Notation and preliminaries

2.1. Notation. Throughout this paper we omit floors and ceilings whenever this does not affect the
argument. We write |G| for the order of a graph G, δ(G) and ∆(G) for its minimum and maximum
degrees respectively and χ(G) for its chromatic number. The degree of a vertex x ∈ V (G) is denoted
by d(x) and its neighbourhood by N(x). Given S ⊆ V (G) we define N(S) :=

⋃
v∈S N(v).

Given disjoint A,B ⊆ V (G) the number of edges with one endpoint in A and one endpoint in
B is denoted by eG(A,B). We write (A,B)G for the bipartite subgraph of G with vertex classes
A and B whose edges are precisely those edges in G with one endpoint in A and the other in B.
Often we will write (A,B), for example, if this is unambiguous.
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2.2. Degree sequence and Ore-type conditions forcing robust expansion. The following
result is an immediate consequence of Lemma 13 from [26].

Lemma 9 ([26]). Given positive constants τ � η < 1 there exists an integer n0 such that when-
ever G is a graph on n ≥ n0 vertices with

di ≥ i+ ηn or dn−i−ηn ≥ n− i for all i < n/2,

then δ(G) ≥ ηn and G is a robust (τ2, τ)-expander. �

Notice that Lemma 9 together with Theorem 8 implies Theorem 4. We now show that Theorem 4
implies Theorem 5.

Lemma 10. Let γ > 0. Suppose G is a graph on n vertices such that, for all non-adjacent
x 6= y ∈ V (G),

d(x) + d(y) ≥ (1 + 2γ)n.

Let d1 ≤ · · · ≤ dn denote the degree sequence of G. Then

di ≥ i+ γn or dn−i−γn ≥ n− i for all i < n/2.

Proof. Firstly note that for (1− γ)n/2 ≤ i < n/2 we wish to show that either dn−i′−γn ≥ n− i′ or
di′ ≥ i′ + γn, where i′ := n− i− γn. Notice that n/2− γn < i′ ≤ n/2− γn/2. Thus, it suffices to
only consider i such that 1 ≤ i ≤ (1− γ)n/2.

Suppose there is some 1 ≤ i ≤ (1−γ)n/2 such that the statement does not hold. Then there is a
set A of i vertices, each of degree less than i+ γn ≤ n/2 + γn/2. So for any x, y ∈ A, d(x) + d(y) <
(1 + 2γ)n and hence G[A] is a clique. Set B := V (G)\A. Note that eG(A,B) < (γn+ 1)i. Hence,
there is a vertex x ∈ B that receives less than min{γn + 1, i} edges from A. Therefore, there is a
vertex y ∈ A such that xy 6∈ E(G). Thus, d(x) + d(y) < (n− i− 1 + γn+ 1) + (i+ γn) ≤ (1 + 2γ)n,
contradicting our assumption. �

3. Outline of the proof of Theorem 8

3.1. Proof overview. The overall strategy is similar to that of the proof of Theorem 1 in [7].
Indeed, as in [7] the proof is split into two main lemmas; the Lemma for G and the Lemma for
H. However, many of the methods used in [7] break down in our setting so our argument proceeds
somewhat differently.

The role of the Lemma for G (Lemma 23) is to obtain some special structure within G so that it
will be suitable for embedding H into; By applying Theorem 7, we show that G contains a spanning
subgraph G′ which ‘looks’ like the blow-up of a cycle C = V1V2 . . . V2kV1. More precisely, there is
a partition V1, . . . , V2k of V (G) such that:

(i) (V2i−1, V2i)G′ is a ‘super-regular’ pair of density at least d > 0 for each 1 ≤ i ≤ k;
(ii) (V2i, V2i+1)G′ is an ‘ε-regular’ pair of density at least d for each 1 ≤ i ≤ k.

Furthermore, there are even integers 1 ≤ i1 6= j1 ≤ 2k such that:

(iii) (Vi1 , Vj1)G′ is ‘ε-regular’ with density at least d.

(So Vi1Vj1 can be thought of as a chord of C.) Crucially, this partition is ‘robust’ in the sense
that one can modify the sizes of each partition class Vi somewhat without destroying the properties
(i)–(iii). (This is made precise by the Mobility lemma given in Section 6.)

Set c := Vi1Vj1 . The role of the Lemma for H (Lemma 25) is to construct a graph homomorphism
f from H to C ∪ {c} in such a way that ‘most’ of the edges of H are mapped to edges of the form
V2i−1V2i for some i. (Recall that these are the edges which correspond to super-regular pairs in
G′.) The homomorphism f is such that every Vi ∈ C receives roughly |Vi| vertices of H. So f can
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be viewed as a ‘guide’ as to which vertex class Vi ⊆ V (G) each vertex from H is embedded into.
In particular, since the partition V1, . . . , V2k is ‘robust’, we can alter the sizes of the classes Vi such
that (i)–(iii) still hold and so that now |f−1(Vi)| = |Vi| for all i. Properties (i)–(iii) then allow us
to apply the Blow-up lemma [19] to embed H into G′ and thus G. (Actually we apply a result
from [3] which is a consequence of the Blow-up lemma.)

3.2. Techniques for the Lemma for G. In order to obtain the partition V1, . . . , V2k of V (G) we
modify a partition V ′0 , V

′
1 , . . . , V

′
2k obtained by applying Szemerédi’s Regularity lemma [30] to G.

Roughly speaking, V ′1 , . . . , V
′
2k will satisfy (i)–(iii). Thus, we need to redistribute the vertices from

V ′0 into the other vertex classes whilst retaining these properties. We also require our partition
V1, . . . , V2k to satisfy |V2i−1| ≈ |V2i| for each 1 ≤ i ≤ k. So we need to redistribute vertices in a
‘balanced’ way. In the Lemma for G in [7], the minimum degree condition of Theorem 1 is heavily
relied on to achieve this. However, our graph G may have very small minimum degree. So instead
we introduced the notion of a ‘shifted M -walk’ to help us redistribute vertices: Given a perfect
matching M in a graph R a shifted M -walk is a walk whose edges alternate between edges of M
and edges of R\M (see Section 5.1 for the precise definition). Since G is a robust expander, we can
find short shifted M -walks in a reduced graph R of G. (Here, M will be the perfect matching in R
that corresponds to the super-regular pairs from (i) above.) These walks act as a ‘guide’ as to how
we redistribute vertices amongst the vertex classes.

3.3. Techniques for the Lemma for H. In [7] the techniques used are actually strong enough
to prove a more general result than Theorem 1 (and so Theorem 1 is not proved directly). For
example, in the case when r = 2, their result concerns not only bipartite H but also a special
class of 3-colourable graphs H where the third colour class is very small (see Theorem 2 in [7] for
precise details). One example of such a graph H is a Hamilton cycle C ′ with a chord between two
vertices of distance 2 on C ′. H is 3-colourable and has bounded bandwidth. However, H cannot be
embedded into every graph G satisfying the hypothesis of Theorem 8. Indeed, consider the graph
G defined at the end of Section 1.3.

In particular, this means we have to approach the proof of the Lemma for H differently: Since H
has bandwidth o(n) we can chop V (H) into small linear sized segments A1, B1, . . . , Am, Bm where
all the edges of H lie in pairs of the form (Ai, Bi)H and (Bi, Ai+1)H and such that A := ∪mi=1Ai and
B := ∪mi=1Bi are the colour classes of H. Ideally we would want to construct f to map the vertices
of A1 into V1, the vertices of B1 into V2 and so on, continuing around C many times until all the
vertices have been assigned. However, since |A| and |B| may vary widely, this would map vertices
in an unbalanced way. That is, the total number of vertices mapped to ‘odd’ classes V2i−1 would
differ widely from the total number of vertices mapped to ‘even’ classes V2i. We get around this
problem by using the chord c = Vi1Vj1 to ‘flip’ halfway in the process. So after this, vertices from
the Bi are mapped to ‘odd’ classes V2i−1 and vertices from the Ai are mapped to the ‘even’ classes
V2i. We also ‘randomise’ part of the mapping procedure to ensure that the number of vertices of
H assigned to each Vi is approximately |Vi|. (A randomisation technique of a similar flavour was
used in [22].)

4. The Regularity lemma

In the proof of the Lemma for G (Lemma 23) we will use Szemerédi’s Regularity lemma [30]. In
this section we will introduce all the information we require about this result. To do this, we firstly
introduce some more notation. The density of a bipartite graph G with vertex classes A and B is
defined to be

d(A,B) :=
e(A,B)

|A||B|
.
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Given any ε, d > 0, we say that G is (ε, d)-regular if d(A,B) ≥ d and, for all sets X ⊆ A and
Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B|, we have |d(A,B) − d(X,Y )| < ε. We say that G is
(ε, d)-super-regular if additionally every vertex a ∈ A has at least d|B| neighbours in B and every
vertex b ∈ B has at least d|A| neighbours in A. We also say that (A,B) is an (ε, d)-(super-)regular
pair. We will frequently use the following simple fact.

Fact 11. Let ε, d > 0. Suppose that G = (A,B) is an (ε, d)-regular pair. Let B′ ⊆ B be such that
|B′| ≥ ε|B|. Then there are at most ε|A| vertices in A with fewer than (d − ε)|B′| neighbours in
B′. �

We will also require the next simple proposition which allows us to modify a (super-)regular pair
without destroying its (super-)regularity (see e.g., [6, Proposition 8]).

Proposition 12. Let (A,B) be an (ε, d)-regular pair, and let A′ and B′ be vertex sets with |A′∆A| ≤
α|A| and |B′∆B| ≤ β|B|. Then (A′, B′) is an (ε′, d′)-regular pair where

ε′ := ε+ 3(
√
α+

√
β) and d′ := d− 2(α+ β).

If, moreover, (A,B) is (ε, d)-super-regular and each vertex in A′ has at least d|B′| neighbours in B′

and each vertex in B′ has at least d|A′| neighbours in A′, then (A′, B′) is (ε′, d′)-super-regular.
�

We will use the following degree form of Szemerédi’s Regularity lemma [30] which can be easily
derived from the classical version.

Lemma 13 (Regularity lemma). For every ε > 0 and k0 ∈ N there exists K0 = K0(ε, k0) such that
for every d ∈ [0, 1] and for every graph G on n ≥ K0 vertices there exists a partition V0, V1, . . . , Vk
of V (G) and a spanning subgraph G′ of G, such that the following conditions hold:

(i) k0 ≤ k ≤ K0,
(ii) dG′(x) ≥ dG(x)− (d+ ε)n for every x ∈ V (G),

(iii) the subgraph G′[Vi] is empty for all 1 ≤ i ≤ k,
(iv) |V0| ≤ εn,
(v) |V1| = |V2| = . . . = |Vk|,

(vi) for all 1 ≤ i < j ≤ k either (Vi, Vj)G′ is an (ε, d)-regular pair or G′[Vi, Vj ] is empty.
�

We call V1, . . . , Vk clusters, V0 the exceptional set and the vertices in V0 exceptional vertices. We
refer to G′ as the pure graph. The reduced graph R of G with parameters ε, d and k0 is the graph
whose vertices are V1, . . . , Vk and in which ViVj is an edge precisely when (Vi, Vj)G′ is (ε, d)-regular.

The following result implies that the property of a graph G being a robust expander is ‘inherited’
by the reduced graph R of G. It is an immediate consequence of Lemma 14 from [26].

Lemma 14 ([26]). Let k0, n0 be positive integers and let ε, d, η, ν, τ be positive constants such that
1/n0 � ε � d � ν, τ, η < 1 and such that k0 � n0. Let G be a graph on n ≥ n0 vertices with
δ(G) ≥ ηn and such that G is a robust (ν, τ)-expander. Let R be the reduced graph of G with
parameters ε, d and k0. Then δ(R) ≥ η|R|/2 and R is a robust (ν/2, 2τ)-expander. �
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5. Useful results

5.1. Shifted walks and robust expanders. Let G be a graph containing a perfect matching
M . A shifted M -walk in G with endpoints a = v1 and b = v2` is a walk v1v2 . . . v2` in G such that
v2iv2i+1 ∈ M for every 1 ≤ i ≤ ` − 1 and v2i−1v2i 6∈ M for any 1 ≤ i ≤ `. A shifted M -walk
is simple if it contains each edge of M at most twice. Note that a path containing a single edge
v1v2 6∈M is a (simple) shifted M -walk for any perfect matching M .

Lemma 15. Let G be a graph containing a perfect matching M , and let W be a shifted M -walk in
G with endpoints a and b. Then W contains a simple shifted M -walk W ′ with endpoints a and b.

Proof. We proceed by induction. Let W = v1 . . . v2`. If W is already simple then we set W ′ := W ;
otherwise, there exists an edge xy ∈M which appears at least three times in W . Let the first three
appearances of xy be vi1vi1+1, vi2vi2+1 and vi3vi3+1 (in order). Now each of vi1 , vi2 and vi3 is either
x or y, and so without loss of generality we can assume that vi1 = vi2 = x. Now we have a shorter
shifted M -walk v1 . . . vi1vi2+1 . . . v2`. �

Lemma 16. Let M be a perfect matching in a graph G and let A ⊆ V (M) be a set containing at
most one vertex from each edge of M . Suppose that W is a shifted M -walk both of whose endpoints
lie in A. Then W contains a shifted M -walk W ′ such that the endpoints of W ′ both lie in A and
no other vertices of W ′ lie in A.

Proof. Let W = v1 . . . v2`. Let 1 ≤ i1 ≤ ` be minimal such that v2i1 ∈ A, and let 1 ≤ i2 ≤ i1 be
maximal such that v2i2−1 ∈ A. Now v2i2−1v2i2 . . . v2i1−1v2i1 is the desired shifted M -walk. �

In the proof of the Lemma for G we will use shifted walks in the reduced graph R of G as
a “guide” as to how to redistribute vertices in G. Since the reduced graph R will be a robust
expander, the following result ensures we can find our desired shifted walks.

Let G be a graph containing a perfect matching M , and let A ⊆ V (G). For each v ∈ V (G),
let v′ ∈ V (G) be the unique vertex such that vv′ ∈ M . The shifted M -neighbourhood of A is the
set SNM (A) = {v′ | v ∈ N(A)}. SN r

M (A) is defined recursively by SN1
M (A) := SNM (A) and

SN r
M (A) := SNM (SN r−1

M (A)) for r ≥ 2.

Lemma 17. Let 0 < ν ≤ τ < η � 1 be constants. Suppose G is a graph on n vertices with
δ(G) ≥ ηn which is a robust (ν, τ)-expander, and let M be a perfect matching in G. Then for any
a ∈ V (G), G contains a shifted M -walk of length at most 3/ν which both starts and finishes at a.

Proof. The minimum degree condition implies that |SNM (a)| = |N(a)| ≥ ηn ≥ τn. Since G is a
robust (ν, τ)-expander,

|SN r
M (a)| = |N(SN r−1

M (a))| ≥ min
{
|SN r−1

M (a)|+ νn, (1− τ + ν)n
}
,

for all r ≥ 2. Hence |SN1/2ν
M (a)| ≥ (τ + 1/2− ν)n and so

|N(SN
1/2ν
M (a))| ≥ (1/2 + τ)n.

Thus, there exists some edge vv′ ∈ M such that both v and v′ lie in N(SN
1/2ν
M (a)). This implies

that there exists a shifted M -walk P with endpoints a and v and a shifted M -walk P ′ with endpoints
a and v′, each of length at most 1/ν + 1. Now P ∪ vv′ ∪ P ′ forms a shifted M -walk of length at
most 2/ν + 3 ≤ 3/ν which starts and finishes at a. �
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The next lemma allows us to delete a small number of vertices from a robust expander without
destroying this property.

Lemma 18. Let 0 < α < ν ≤ τ � 1 be constants. Suppose that G is a graph on n vertices
which is a robust (ν, τ)-expander and let S ⊆ V (G) be a set of size αn. Then G − S is a robust
(ν − α, τ + α)-expander.

Proof. Let G′ := G − S and n′ := |G′|. Consider any A ⊆ V (G′) such that (τ + α)n′ ≤ |A| ≤
(1− τ − α)n′. Set A′ := A ∪ S. Then

τn ≤ (τ + α)n′ + αn ≤ |A′| ≤ (1− τ − α)n′ + αn ≤ (1− τ)n.

So |RNν,G(A′)| ≥ |A′| + νn. Now every vertex of RNν,G(A′) has at least νn neighbours in A′

and since |S| = αn, at least (ν − α)n ≥ (ν − α)n′ of these must lie in A. Hence every vertex of
RNν,G(A′)\S lies in RNν−α,G′(A), and so |RNν−α,G′(A)| ≥ |A′| + νn − |S| ≥ |A| + (ν − α)n′, as
desired. �

5.2. Probabilistic bounds. The following two probabilistic bounds will be used in the proof of
the Lemma for H (Lemma 25).

Lemma 19 ([22], Lemma 2.1). Suppose that 1/k � p, (1 − p), ε, that n ≥ k3/6, and that X ∼
Bin(n, p). Then for any 0 ≤ r ≤ k − 1,

1− ε
k
≤ P(X ≡ r mod k) ≤ 1 + ε

k
.

�

Lemma 20 ([29], Proposition 1.1). Let X1, . . . , Xn be random variables taking values in [0, 1], such
that for each 1 ≤ k ≤ n,

E[Xk | Xk−1, . . . , X1] ≤ ak.
Let µ :=

∑n
k=1 ak. Then for any 0 < δ ≤ 1,

P

[
n∑
k=1

Xk > (1 + δ)µ

]
≤ e−

δ2µ
3 .

�

We also require the following expectation bound.

Lemma 21. Suppose that X and Y are integer-valued random variables and that B is an event,
such that for each x, y ∈ Z, P[X = x | B ∩ (Y = y)] = P[X = x | Y = y]. Then

E[X | B] ≤ max
y∈Z

E[X | Y = y].

Proof. Note that for each x ∈ Z,

P[X = x | B] =
∑
y∈Z

P[(X = x) ∩ (Y = y) | B].

Further,

P[(X = x) ∩ (Y = y) | B] =
P[(X = x) ∩ (Y = y) ∩B]

P[B]

=
P[(X = x) ∩ (Y = y) ∩B]

P[(Y = y) ∩B]
· P[(Y = y) ∩B]

P[B]

= P[X = x | Y = y] · P[Y = y | B].

9



Hence,

E[X | B] =
∑
x∈Z

xP[X = x | B] =
∑
x∈Z

x
∑
y∈Z

P[X = x | Y = y] · P[Y = y | B]

=
∑
y∈Z

P[Y = y | B]
∑
x∈Z

xP[X = x | Y = y] =
∑
y∈Z

P[Y = y | B] · E[X | Y = y]

≤ max
y∈Z

E[X | Y = y].

�

6. The Mobility lemma

In order to state our next result we first introduce a slight variant of the notion of a reduced
graph. Let ε, ε′, d, d′ > 0. Suppose that G is a graph and V1, . . . , Vk is a partition of V (G). We say
that a graph R is an (ε, d)-reduced graph of G on V1, . . . , Vk if the following holds:

• V (R) = {V1, . . . , Vk};
• If ViVj ∈ E(R) then (Vi, Vj)G is an (ε, d)-regular pair (for all 1 ≤ i 6= j ≤ k).

Suppose V ′1 , . . . , V
′
k is another partition of V (G) andR is as above (in particular, V (R) = {V1, . . . , Vk}).

We also say that R is an (ε′, d′)-reduced graph of G on V ′1 , . . . , V
′
k if the following holds:

• If ViVj ∈ E(R) then (V ′i , V
′
j )G is an (ε′, d′)-regular pair (for all 1 ≤ i 6= j ≤ k).

Suppose that V1, . . . , Vk and V ′1 , . . . , V
′
k are both partitions of the vertex set of a graph G. Given

a cluster V = Vi for some 1 ≤ i ≤ k, we will often denote by V ′ the cluster V ′i .
We will apply the next result in the proof of the Lemma for G (Lemma 23) so that we can alter a

particular partition of a graph G somewhat without destroying the structure of our reduced graph
R.

Lemma 22 (Mobility lemma). Let k ∈ N, and let ξ, ε, ε′, d′, d be positive constants such that

0 < ξ � 1/k � ε� ε′ � d′ � d� 1.

Suppose G is a graph on n vertices, A1, B1, A2, B2, . . . , Ak, Bk is a partition of V (G) such that
|Ai|, |Bi| ≥ n/3k for all 1 ≤ i ≤ k and R is an (ε, d)-reduced graph on A1, B1, . . . , Ak, Bk. Let
(ai)

k
i=1 and (bi)

k
i=1 be integers. Suppose that the following conditions hold:

(i) R contains the Hamilton cycle C = A1B1A2B2 . . . AkBkA1;
(ii) R contains an edge Ai1Aj1 for some i1 6= j1;

(iii) R contains an edge Bi2Bj2 for some i2 6= j2;
(iv) The pair (Ai, Bi)G is (ε, d)-super-regular for all 1 ≤ i ≤ k;
(v) |ai|, |bi| < ξn for each 1 ≤ i ≤ k;

(vi)
∑k

i=1 ai +
∑k

i=1 bi = 0;

(vii) |
∑k

i=1 ai| = |
∑k

i=1 bi| ≤ ξn.

Then there exists a partition A′1, B
′
1, A

′
2, B

′
2, . . . , A

′
k, B

′
k of V (G) such that |A′i| = |Ai| + ai and

|B′i| = |Bi|+bi for each 1 ≤ i ≤ k, R is an (ε′, d′)-reduced graph of G on A′1, B
′
1, A

′
2, B

′
2, . . . , A

′
k, B

′
k,

and (A′i, B
′
i)G is (ε′, d′)-super-regular for each 1 ≤ i ≤ k.

Proof. Without loss of generality we may assume that
∑k

i=1 ai ≥ 0. (As a consequence of this
assumption we will in fact only need the edge Bi2Bj2 , and not the edge Ai1Aj1 .) Note that by (iii)
and Fact 11 there are at least (1− ε)|Bi2 | � ξn vertices in Bi2 with at least (d− ε)|Bj2 | neighbours

in Bj2 . Pick
∑k

i=1 ai ≤ ξn of these vertices and move them from Bi2 into Aj2 . Call the resulting
sets B∗i2 and A∗j2 respectively.

10



We now perform an iterative procedure which will reassign vertices among the vertex classes
(Ai)

k
i=1 and, separately, (Bi)

k
i=1. Initially we define the classes A∗i = Ai for each i 6= j2 and

B∗i = Bi for each i 6= i2. Roughly speaking, A∗i (or B∗i ) will be the current version of Ai (or Bi).
The choice of how we defined B∗i2 and A∗j2 is such that, initially,

k∑
i=1

|A∗i | =
k∑
i=1

|Ai|+
k∑
i=1

ai and
k∑
i=1

|B∗i | =
k∑
i=1

|Bi|+
k∑
i=1

bi.(1)

Throughout the procedure we will ensure that (1) holds. Furthermore, throughout we will ensure
that

(2) |A∗i∆Ai|, |B∗i ∆Bi| ≤ 5kξn ≤ ε|Ai|, ε|Bi|

for every 1 ≤ i ≤ k. We will also ensure that whenever a vertex v is moved to a cluster A∗i , v
has at least (d − ε)|Bi| neighbours in Bi, and vice versa. We will terminate the procedure when
|A∗i | = |Ai|+ ai and |B∗i | = |Bi|+ bi, and then set A′i := A∗i and B′i := B∗i for each 1 ≤ i ≤ k.

Each iteration proceeds as follows: Let 1 ≤ i ≤ k be such that |A∗i | < |Ai|+ ai and let j 6= i be
such that |A∗j | > |Aj |+ aj . (Such i and j exist by (1).) Suppose that i < j. Note that (i) implies

that (Bj−1, Aj)G is an (ε, d)-regular pair. So by (2) and Fact 11 there is a vertex v in A∗j which

has at least (d− ε)|Bj−1| neighbours in Bj−1. We move v from A∗j to A∗j−1. Similarly we move one

vertex (which need not be v) from A∗j−1 to A∗j−2, and so on until we move one vertex from A∗i+1

to A∗i . On the other hand, if j < i we perform the same procedure moving vertices in the same
direction as before. That is, we move a vertex from A∗j to A∗j−1 and so on until we move a vertex
A∗2 to A∗1. Then we move a vertex A∗1 to A∗k and continue until we move a vertex from A∗i+1 to A∗i .

Since in each step of the process we only move vertices between the A∗i , certainly (1) holds
throughout. Now when the procedure terminates we have |A∗i | = |Ai| + ai for all 1 ≤ i ≤ k. It
remains to show that (2) holds. Note that in each step of the iteration we add at most one vertex
to each A∗i and remove at most one vertex from each A∗i . Further, in total we need to perform the
iterative procedure at most

k∑
i=1

|ai|+
k∑
i=1

ai ≤ (k + 1)ξn ≤ 2kξn

times. (The
∑k

i=1 ai here comes from the fact that, at the start, we moved
∑k

i=1 ai vertices from
Bi2 to Aj2 .) Thus, at the end of the procedure |A∗j2∆Aj2 | ≤ 5kξn and |A∗i∆Ai| ≤ 4kξn for all

i 6= j2. We now set A′i := A∗i for each 1 ≤ i ≤ k.
We apply an identical iterative procedure to the B∗i . However, we now move vertices in the

opposite direction to before (so vertices are moved from B∗j to B∗j+1, etc.). Therefore we obtain

sets B′i such that |B′i| = |Bi|+ bi and |B′i∆Bi| ≤ 5kξn for all 1 ≤ i ≤ k.
Given any VW ∈ E(R), (V,W )G is an (ε, d)-regular pair. Since by (2), |V ′∆V |, |W ′∆W | ≤

ε|V |, ε|W |, Proposition 12 implies that (V ′,W ′)G is an (ε′, d′)-regular pair. So indeed, R is an
(ε′, d′)-reduced graph of G on A′1, B

′
1, A

′
2, B

′
2, . . . , A

′
k, B

′
k. It remains to show that the pair (A′i, B

′
i)G

is (ε′, d′)-super-regular for every 1 ≤ i ≤ k. By (iv) and (2), every vertex v ∈ Ai has at least
(d − ε)|Bi| ≥ d′|B′i| neighbours in B′i. Further, during our iterative procedure we ensured that
every vertex v ∈ A′i\Ai has at least (d − ε)|Bi| neighbours in Bi. Hence (2) implies that every
v ∈ A′i has at least

(d− ε)|Bi| − ε|Bi| ≥ d′|B′i|
neighbours in B′i. Similarly each w ∈ B′i has at least d′|A′i| neighbours in A′i. So (A′i, B

′
i)G is an

(ε′, d′)-super-regular pair for all 1 ≤ i ≤ k, as desired. �
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7. The Lemma for G

Lemma 23 (Lemma for G). Let n0 ∈ N and let λ, ξ, ε, d, ν, τ, η be positive constants such that

0 < 1/n0 � λ� ξ � ε� d� ν ≤ τ � η � 1.

Suppose G is a graph on n ≥ n0 vertices with δ(G) ≥ ηn which is a robust (ν, τ)-expander. Then
there exists an integer k such that ξ � 1/k � ε, integers 1 ≤ i1 6= j1, i2 6= j2 ≤ k and a partition
(ni)

2k
i=1 of n with ni > n/3k for all 1 ≤ i ≤ 2k and |n2i−1 − n2i| ≤ λn for all 1 ≤ i ≤ k such that

the following holds: For every partition (n′i)
2k
i=1 of n satisfying n′i ≤ ni + ξn for all 1 ≤ i ≤ 2k,

there exists a partition A′1, B
′
1, A

′
2, B

′
2, . . . , A

′
k, B

′
k of V (G) and a spanning subgraph G′ of G such

that the following properties are satisfied.

(α1) |A′i| = n′2i−1 and |B′i| = n′2i for all 1 ≤ i ≤ k;
(α2) (A′i, B

′
i)G′ is (ε, d)-super-regular for all 1 ≤ i ≤ k;

(α3) (B′i, A
′
i+1)G′ is (ε, d)-regular for all 1 ≤ i ≤ k (where A′k+1 := A′1);

(α4) (A′i1 , A
′
j1

)G′ is (ε, d)-regular;

(α5) (B′i2 , B
′
j2

)G′ is (ε, d)-regular.

Proof. Choose additional constants ε′ and d′ such that

ξ � ε′ � ε� d� d′ � ν.

Apply the Regularity Lemma (Lemma 13) with parameters ε′, d′ and k0 := 1/ε′ to obtain clusters
V1, . . . , Vk′ of size m (where (1− ε′)n/k′ ≤ m ≤ n/k′), an exceptional set V0, a pure graph G′ ⊆ G
and the reduced graph R of G with parameters ε′, d′ and k0. Since ξ � ε′ we may assume that

ξ � 1/k′ ≤ ε′.

If k′ is odd then we delete Vk′ from R and add all of the vertices of Vk′ to V0. So |V0| ≤ ε′n+m ≤
2ε′n. We now refer to this modified reduced graph as R and redefine k′ = |R|. By Lemma 14, R
originally had minimum degree at least ηk′/2 and was a robust (ν/2, 2τ)-expander. So R still has
minimum degree at least ηk′/3 and by Lemma 18, R is still a robust (ν/3, 3τ)-expander.

Set k := k′/2. Since 1/k′ � ν ≤ τ � η < 1, Theorem 7 implies that R contains a Hamil-
ton cycle C = A1B1 . . . AkBkA1. Since |C| = 2k is even, C contains a perfect matching M =
{A1B1, . . . , AkBk}. Notice that R contains an edge Ai1Aj1 for some 1 ≤ i1 6= j1 ≤ k and an edge

Bi2Bj2 for some 1 ≤ i2 6= j2 ≤ k. Indeed, let A := {Ai}ki=1 and note that since R is a robust
(ν/3, 3τ)-expander we have |RNν,R(A)| ≥ k + νk′. This implies that A ∩RNν,R(A) 6= ∅ and hence
that R contains some edge Ai1Aj1 . Similarly R contains an edge Bi2Bj2 .

Fact 11 implies that we can replace each cluster in V (R) with a subcluster of size m′ := (1−ε′)m
such that for every edge AjBj ∈ M the chosen subclusters of Aj and Bj form a (2ε′, d′/2)-super-
regular pair in G′. We add all of the vertices not in these subclusters to V0, and from now on we
refer to the subclusters as the clusters of R. So (V,W )G′ is still a (2ε′, d′/2)-regular pair for all
VW ∈ E(R). Note that |V0| ≤ 2ε′n+ ε′n = 3ε′n.

Our next task is to incorporate the vertices of V0 into the clusters V1, . . . , Vk′ such that the pairs
(Aj , Bj)G′ remain super-regular and such that the pairs (Vi, Vj)G′ remain regular for all ViVj ∈ E(R)
(with somewhat weaker constants in each case). Let V0 = {x1, . . . , xt} where t ≤ 3ε′n. We will
assign the vertices of V0 in such a way that:

(a) At most 8ε′m′/η vertices are assigned to each cluster V ∈ V (R);
(b) Whenever a vertex xi ∈ V0 is assigned to a cluster Aj , xi has at least ηm′/4 neighbours in

Bj . Similarly any vertex from V0 assigned to Bj has at least ηm′/4 neighbours in Aj .

Suppose we have assigned x1, . . . , xi−1 to clusters in V (R) such that (a) and (b) are satisfied. Call
a cluster V ∈ V (R) full if it has already been assigned 8ε′m′/η vertices of V0. Let F be the set of
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full clusters. Since |V0| ≤ 3ε′n we have |F | ≤ (3ε′ηn)/(8ε′m′) ≤ ηk. Thus, as δ(G) ≥ ηn,∣∣∣∣∣NG(xi)\

(
V0 ∪

⋃
V ∈F

V

)∣∣∣∣∣ ≥ ηn− 3ε′n− (ηk)m′ ≥ ηn/3.

Hence, by the pigeonhole principle there exists some V ∈ V (R)\F such that |NG(xi) ∩ V | ≥
ηn/3k′ ≥ ηm′/4. Now if V = Aj for some 1 ≤ j ≤ k then we add xi to Bj ; otherwise, V = Bj for
some 1 ≤ j ≤ k and we add xi to Aj . Repeating this process for each xi we indeed assign all of the
vertices of V0 to the clusters of R in such a way that (a) and (b) are satisfied. We now incorporate
all of the assigned vertices into their respective clusters. Further, we add all those edges from G
with endpoints in V0 to G′. Note that

(c) m′ ≤ |V | ≤ m′ + 8ε′m′/η ≤ (1 +
√
ε′)m′ for all V ∈ V (R),

(d) (V,W )G′ is a ((ε′)1/3, d′/4)-regular pair for every edge VW ∈ E(R) and

(e) (V,W )G′ is a ((ε′)1/3, d′/4)-super-regular pair for every edge VW ∈ E(M).

(Conditions (d) and (e) follow by Proposition 12.)
Next we will perform an algorithm which redistributes vertices among the clusters in R in such

a way that ||Ai| − |Bi|| ≤ λn for each 1 ≤ i ≤ k. We define {A∗i , B∗i }ki=1, R
∗ and M∗ as follows:

Initially we set A∗i := Ai and B∗i := Bi for all 1 ≤ i ≤ k, R∗ := R and M∗ := M . At each step we
will redefine each A∗i and B∗i , R∗ and M∗ and reassign vertices so that the quantity

Σ∗ =
∑

1≤i≤k,||A∗i |−|B∗i ||>λn

||A∗i | − |B∗i ||

decreases by at least λn. The algorithm will terminate when Σ∗ = 0, i.e. when ||A∗i | − |B∗i || ≤ λn
for all 1 ≤ i ≤ k. Initially Σ∗ ≤ 8ε′m′k/η ≤ 4ε′n/η by (c), and hence we need at most 4ε′/ηλ steps
to complete the process. R∗ will always be an induced subgraph of R and at each step we set M∗ to
be the submatching of M induced by V (R∗). (Note that V (R∗) is a subset of V (R) = {Ai, Bi}ki=1
throughout the algorithm.)

We will ensure that the inequality

(3) |R∗| ≥ (1− ν/12) k′

holds throughout, and that M∗ is a perfect matching in R∗. Further we will ensure that

(4) |A∗i \Ai| ≤ (ε′)1/3m′ and |B∗i \Bi| ≤ (ε′)1/3m′;

(5) |Ai\A∗i | ≤ (ε′)1/3m′ and |Bi\B∗i | ≤ (ε′)1/3m′

for all 1 ≤ i ≤ k.
Each step proceeds as follows: Call a vertex v well-connected to a cluster V ∈ V (R) if v has at

least d′m′/8 neighbours in V . Recall that if VW ∈ E(R) then (V,W )G′ is a ((ε′)1/3, d′/4)-regular
pair and so V contains at least m′/2 vertices v which are well-connected to W . In what follows we
will ensure that every vertex we redistribute to a cluster A∗i is well-connected to Bi and vice versa.
Since (5) holds throughout the process, given any VW ∈ E(R∗), V ∗ will always contain at least

m′/2 − (ε′)1/3m′ ≥ m′/3 � λn vertices that are well-connected to W (where V ∗ := A∗i if V = Ai
for some i and V ∗ := B∗i if V = Bi for some i). Thus, at any point during the algorithm we may
choose a set of λn well-connected vertices from any of the A∗i and B∗i . (When it is clear from the
context, we will not explicitly specify which cluster a vertex v is well-connected to.)

Let S be the set of clusters V ∗ ∈ V (R∗) such that either V ∗ = Ai where |A∗i | > |B∗i | + λn or
V ∗ = Bi where |B∗i | > |A∗i |+ λn. If S is empty then the algorithm terminates. (We shall see later
that in this case we must have that Σ∗ = 0.) Otherwise, choose V ∗ ∈ S arbitrarily. Since R is
a robust (ν/3, 3τ)-expander and δ(R) ≥ ηk′/3, (3) implies that δ(R∗) ≥ η|R∗|/4 and Lemma 18
implies that R∗ is a robust (ν/4, 4τ)-expander. Hence Lemma 17 implies that R∗ contains a shifted
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M∗-walk P ′ of length at most 12/ν which starts and finishes at V ∗. By Lemma 15, P ′ contains a
simple shifted M∗-walk P ′′ which also starts and finishes at V ∗. Now apply Lemma 16 to P ′′ to
obtain a simple shifted M∗-walk P of length at most 12/ν, such that the endpoints of P both lie
in S and no other vertices of P lie in S. We call P the active walk of this step of the algorithm.

Let P = U1W2U2 . . .W`−1U`−1W` such that WiUi ∈ E(M∗) for each 2 ≤ i ≤ `− 1. Let W1 and
U` denote the clusters such that W1U1,W`U` ∈ E(M∗). Given any 1 ≤ i ≤ `, if Ui = Aj for some
1 ≤ j ≤ k, set U∗i := A∗j ; otherwise Ui = Bj for some 1 ≤ j ≤ k, so set U∗i := B∗j . Define W ∗i
analogously for each 1 ≤ i ≤ `. Move λn/2 well-connected vertices from U∗1 into U∗2 , λn/2 well-
connected vertices from U∗2 into U∗3 , and so on until we have moved λn/2 well-connected vertices
from U∗`−1 to U∗` . Then move λn/2 well-connected vertices from W ∗2 into W ∗1 , λn/2 well-connected
vertices from W ∗3 into W ∗2 , and so on until we have moved λn/2 well-connected vertices from W ∗`
to W ∗`−1. Note that since P is simple, each cluster loses at most λn vertices and gains at most λn
vertices. Further for each 1 < i < ` the quantity ||W ∗i |−|U∗i || remains unchanged (in fact, |W ∗i | and
|U∗i | remain unchanged). For i = 1, `, ||W ∗i | − |U∗i || decreases by precisely λn (or 2λn if U1 = W`).

In order to ensure that (4) holds, we remove from R∗ every pair {Ai, Bi} of clusters such that

|A∗i \Ai| ≥ (ε′)1/3m′− λn or |B∗i \Bi| ≥ (ε′)1/3m′− λn. Since each cluster gains at most λn vertices
in each step, any clusters which are not removed will still satisfy (4) at the end of the next step.
Similarly, to ensure that (5) holds, we remove from R∗ every pair {Ai, Bi} of clusters such that

|Ai\A∗i | ≥ (ε′)1/3m′ − λn or |Bi\B∗i | ≥ (ε′)1/3m′ − λn.

Claim 24. For each pair {Ai, Bi} of clusters which is removed from R∗ we have that ||A∗i |−|B∗i || ≤
λn.

To prove the claim, suppose for a contradiction that some pair {Ai, Bi} of clusters is removed from
R∗ and that ||A∗i | − |B∗i || > λn. In order for {Ai, Bi} to be removed we must have that |A∗i \Ai| ≥
(ε′)1/3m′ − λn, |B∗i \Bi| ≥ (ε′)1/3m′ − λn, |Ai\A∗i | ≥ (ε′)1/3m′ − λn or |Bi\B∗i | ≥ (ε′)1/3m′ − λn.

Without loss of generality assume that |A∗i \Ai| ≥ (ε′)1/3m′ − λn. Since in each step we add at

most λn vertices to A∗i , there must have been at least (ε′)1/3m′/2λn steps in the algorithm so far,
such that Ai is contained in the active walk P of each step. By the definition of P , either Ai or Bi
must be an endpoint of P . So ||A∗i | − |B∗i || is reduced by at least λn during each such step, and

hence by at least (ε′)1/3m′/2 during the algorithm so far. But this is a contradiction since initially

||A∗i | − |B∗i || ≤
√
ε′m′ ≤ (ε′)1/3m′/2.

It remains to show that (3) holds throughout the process. Suppose for a contradiction that at
some point more than νk′/12 clusters have been removed from R∗. Then at least

(6) ((ε′)1/3m′ − λn)

(
νk′

48

)
>
√
ε′n

vertices of G must have been redistributed during the process so far. But at most 12λn/ν vertices
were redistributed during each step, and at most 4ε′/ηλ steps were performed during the process.
Hence the number of redistributed vertices is at most

12λn

ν
· 4ε′

ηλ
<
√
ε′n,

which contradicts (6). This proves that (3) holds throughout.
By construction, when the algorithm terminates we have that V (R∗) does not contain any Ai

and Bi such that ||A∗i | − |B∗i || > λn. Further, by Claim 24, for those clusters Ai, Bi /∈ V (R∗) we
have that ||A∗i | − |B∗i || ≤ λn. Hence, we indeed obtain clusters {A∗i , B∗i }ki=1 such that Σ∗ = 0 and
(4) and (5) hold.
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We now set n2i−1 := |A∗i | and n2i := |B∗i | for each 1 ≤ i ≤ k. Notice that nj ≥ (1− (ε′)1/3)m′ >
n/3k for each 1 ≤ j ≤ 2k. We now relabel the clusters of R in the natural way so that V (R) =
{A∗i , B∗i }ki=1. Note that by (4) and (5) we have

|Ai∆A∗i | ≤ 2(ε′)1/3m′ and |Bi∆B∗i | ≤ 2(ε′)1/3m′

for each 1 ≤ i ≤ k. Hence by Proposition 12 the pair (V,W )G′ is ((ε′)1/10, d′/10)-regular for

every edge VW ∈ E(R). Further, the pair (A∗i , B
∗
i )G′ is ((ε′)1/10, d′/10)-super-regular for every

1 ≤ i ≤ k. Indeed, we ensured that every vertex v which was redistributed to A∗i had at least

d′m′/8 neighbours in Bi. Since |B∗i ∆Bi| ≤ 2(ε′)1/3m′, v has at least d′|B∗i |/10 neighbours in B∗i .
Similarly every vertex w ∈ B∗i has at least d′|A∗i |/10 neighbours in A∗i .

Now suppose we are given a partition (n′i)
2k
i=1 of n such that n′i ≤ ni + ξn for each 1 ≤ i ≤ 2k.

Set ai := n′2i−1 − n2i−1 and bi := n′2i − n2i for all 1 ≤ i ≤ k. Notice that |ai|, |bi| ≤ 2kξn for each

1 ≤ i ≤ k and |
∑k

i=1 ai| = |
∑k

i=1 bi| ≤ 2kξn. Recall that R contains the edges A∗i1A
∗
j1

and B∗i2B
∗
j2

.

Thus, we can apply the Mobility lemma (Lemma 22) with parameters k, 2kξ, (ε′)1/10, ε, d and d′/10
to obtain a partition A′1, B

′
1, . . . , A

′
k, B

′
k of V (G) which satisfies conditions (α1)–(α5). �

8. The Lemma for H

Lemma 25 (Lemma for H). For any ∆, k ∈ N and ξ > 0, there exist β > 0 and n0 ∈ N such that
the following holds: Let H be a bipartite graph on n ≥ n0 vertices with bandwidth at most βn and
such that ∆(H) ≤ ∆. Let n1, n2, . . . , n2k be an integer partition of n such that ni > n/(3k) for all
1 ≤ i ≤ 2k and |n2i−1 − n2i| � ξn for all 1 ≤ i ≤ k. Suppose C is the cycle 12 . . . (2k)1 on [2k],
and let c = {2i1, 2i2} be a chord of C (for some distinct 1 ≤ i1, i2 ≤ k). Then there exists a set
S ⊆ V (H) and a graph homomorphism f : H → C ∪ {c}, such that

(β1) |S| ≤ ξn;
(β2) |f−1(i)| ≤ ni + ξn for all 1 ≤ i ≤ 2k;
(β3) Every edge which is not in H[S] is mapped to an edge {2i− 1, 2i}, for some 1 ≤ i ≤ k.

Proof. Choose β > 0 and integers n0, m1, m2 and k1 such that

1/n0 � β � 1/m1 � 1/m2 � 1/k1 � 1/∆, 1/k, ξ.

Further, we may assume that m2 divides m1. We begin by defining a new cycle C ′ with chord c′

which will act as an intermediate stage between C and H, i.e., we will construct homomorphisms
f1 : C ′∪{c′} → C ∪{c} and f2 : H → C ′∪{c′} such that f = f1 ◦ f2 is our desired homomorphism.
The homomorphism f2 will be constructed to map roughly the same number of vertices to each
vertex in C ′. Notice however, that our desired homorphism f may not map vertices in an ‘equal’
way (since, in general, the ni may be far from equal). Thus, the role of f1 is to ensure f maps the
‘correct’ proportion of vertices to each vertex in C.

Let C ′ be the cycle 12 . . . (2k′)1 on [2k′], where k′ :=
∑

i∈[k]d(n2i−1 + n2i)k1/ne. Note that

k1 ≤ k′ ≤ k1 + k. We define f1 as follows: For each 1 ≤ j ≤ k′, let g(j) ∈ N be such that∑g(j)−1
i=1 d(n2i−1 + n2i)k1/ne < j ≤

∑g(j)
i=1 d(n2i−1 + n2i)k1/ne. Then set f1(2j − 1) = 2g(j)− 1 and

f1(2j) = 2g(j) for each 1 ≤ j ≤ k′.
Recall that c = {2i1, 2i2} is a chord of C. Suppose that i′1, i

′
2 are such that f1(2i

′
1) = 2i1 and

f1(2i
′
2) = 2i2. Notice that as i1 6= i2, we have that i′1 6= i′2. Thus, set c′ := {2i′1, 2i′2} to be the

chord of C ′.
By construction f1(c

′) = c. Given any edge c1 = {2j − 1, 2j} on C ′, we have that f1(c1) =
{2g(j) − 1, 2g(j)}. Further, consider any edge c2 = {2j, 2j + 1} = {2j, 2(j + 1) − 1} on C ′. Then
f1(2j) = 2g(j) and f1(2(j + 1)− 1) = 2g(j + 1)− 1. By definition of f1, either g(j + 1) = g(j) or
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g(j + 1) = g(j) + 1. But both {2g(j), 2g(j)− 1} and {2g(j), 2g(j) + 1} are edges of C. So in either
case f1 maps c2 to an edge of C. Therefore, indeed f1 is a graph homomorphism.

Roughly speaking, we will construct f2 as follows: Initially we split H up into small segments
A1, B1, . . . , Am1 , Bm1 in such a way that almost all of the edges of H lie in the pairs (Ai, Bi)

m1
i=1

and the remainder lie in the pairs (Bi, Ai+1)
m1
i=1. Our ideal strategy would be to map all of the

vertices of A1 onto vertex 1 of C ′, the vertices of B1 onto vertex 2, the vertices of A2 onto vertex
3, etc. This ensures that f2 is a homomorphism and that almost all of the edges of H are mapped
onto an edge of the form {2i− 1, 2i} for some i. However the number of vertices mapped onto each
vertex of C ′ may vary widely. To solve this problem we introduce ‘drunken’ segments in which the
assignment of the vertices is random, and use a probabilistic argument to show that with positive
probability each vertex of C ′ receives approximately the same number of vertices of H. We also use
the chord c′ to ‘turn around’ at some point during the process, in order to eliminate the possible
inequality between the number of vertices of H assigned to odd and even vertices of C ′.

Chopping H up into segments. Since H has bandwidth at most βn, there exists an ordering
x1, x2, . . . , xn of V (H) such that for every edge xixj of H, |i− j| ≤ βn. Let (A,B) be a bipartition
of V (H). We define {Ai, Bi}m1

i=1 as follows: for each vertex xs ∈ A there exists 1 ≤ i ≤ m1 such that
(i−1)n/m1−βn < s ≤ in/m1−βn (unless s > n−βn). We assign xs to Ai (or to Am1 if s > n−βn).
Similarly for each vertex xt ∈ B there exists 1 ≤ j ≤ m1 such that (j − 1)n/m1 < t ≤ jn/m1, and
we assign xt to Bj . Let S be the set of vertices xs such that in/m1 − 2βn < s ≤ in/m1 + βn for
some 1 ≤ i ≤ m1. Note that the following properties hold:

(a) n/m1 − βn ≤ |Ai|+ |Bi| ≤ n/m1 + βn for each 1 ≤ i ≤ m1;
(b) |S| ≤ 3m1βn� ξn;
(c) Every edge of H which is not in H[S] lies in one of the pairs (Ai, Bi) for some 1 ≤ i ≤ m1;
(d) Every edge of H[S] lies in one of the pairs (Ai, Bi) or one of the pairs (Bi, Ai+1) for some

1 ≤ i ≤ m1 (where Am1+1 := A1).

Properties (c) and (d) follow from the fact that H has bandwidth at most βn and that n/m1 � βn.
We now modify the small segments so that properties (a)–(d) are still satisfied and so that every
small segment has size at least n/(4∆m1). Suppose a small segment Ai has size smaller than
n/(4∆m1). Note that |NH(Ai)| ≤ n/(4m1) and so

|Bi\(S ∪NH(Ai))|
(a)

≥ (n/m1 − βn− n/(4∆m1))− 3βn− n/(4m1) ≥ n/(4m1).

But (c) implies that any vertex in Bi\(S∪NH(Ai)) must be isolated in H and so may be reassigned
to Ai without affecting properties (a)–(d). Hence we may reassign sufficiently many vertices so that
|Ai|, |Bi| ≥ n/(4∆m1). For any segment Bi which has size smaller than n/(4∆m1) we proceed in
an identical way. From now on we denote by A the union of small segments

⋃m1
i=1Ai and by B the

union
⋃m1
i=1Bi.

We now group the small segments together to form large segments {Lj}m2
j=1, which are defined as

Lj :=
⋃

(j−1)m1
m2

<t≤ jm1
m2

(At ∪Bt) .

Note that since β � 1/m1, (a) implies that

(7)
n

m2
−
√
βn ≤ |Lj | ≤

n

m2
+
√
βn

for each 1 ≤ j ≤ m2. In order to eliminate any inequality between the number of vertices of H
assigned to odd and even vertices of C ′ we need to partition {Lj}m2

j=1 into two parts. We will assign

the vertices in each part separately. For each 1 ≤ j ≤ m2, set sj := |Lj ∩ A| − |Lj ∩ B|. Note
that |sj | ≤ n/m2 +

√
βn− n/(4∆m2) ≤ n/m2 for each 1 ≤ j ≤ m2, and that

∑m2
j=1 sj = |A| − |B|.
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Suppose without loss of generality that |A| − |B| ≥ 0. Then since β, 1/m2 � ξ there exists an
integer m3 so that ξm2/20 ≤ m3 ≤ (1− ξ/20)m2 and

(8)
(|A| − |B|)

2
− ξn

20
≤

m3∑
i=1

sj ≤
(|A| − |B|)

2
+
ξn

20
.

We will embed separately the large segments {Lj}m3
j=1 and the segments {Lj}m2

j=m3+1.

For each 1 ≤ j ≤ m3, let the drunken segment Dj be the union of the last k2 := ξm1/(6k
′m2)

pairs of small segments in Lj and let the sober segment Sj be the union of the rest of the small
segments in Lj .

Defining our algorithms. We now define three different algorithms for assigning the vertices of
a segment to vertices of C ′, given an initial vertex 2i′0 − 1 ∈ C ′. In each case we work mod 2k′

when dealing with vertices of C ′. The sober algorithm is a deterministic process which proceeds as
follows: Let Sj be a sober segment whose first small segments are Ai0 and Bi0 . For every i such
that Ai and Bi are small segments of Sj , assign every vertex of Ai to the vertex 2i′ − 1 of C ′ and
every vertex of Bi to the vertex 2i′ of C ′ where i′ ≡ i′0 + i− i0 mod k′. So whenever Bi is assigned
to 2i′, Ai+1 is assigned to 2i′ + 1 (mod 2k′). We call the vertex 2i∗ of C ′ to which the vertices of
the last small segment of Sj are assigned the final vertex of the algorithm and define this term in
a similar way for the remaining two algorithms.

The drunken algorithm is a randomised algorithm which proceeds as follows: Given a drunken
segment Dj whose first small segment is Ai0 , assign every vertex of Ai0 to the vertex 2i′0 − 1 of C ′

and every vertex of Bi0 to the vertex 2i′0 of C ′. Then for every pair Ai+1, Bi+1 of small segments
in Dj , let 2i′ be the vertex to which the vertices of Bi were assigned and let

i′′ =

{
i′ with probability 1

2 ;

i′ + 1 with probability 1
2 .

(All random choices are made independently.) Assign every vertex of Ai+1 to 2i′′ − 1 and every
vertex of Bi+1 to 2i′′.

Claim 26. Suppose that the vertices of Dj are assigned using the drunken algorithm with initial
vertex 2i′0 − 1, and let i′1 ∈ [k′] be arbitrary. Let the random variable I be the final vertex of the
drunken algorithm. Then

P[I = 2i′1 | i′0] ≤
1 + ξ/20

k′
.

To prove the claim, note that I ∼ 2(i′0 + Bin(k2, 1/2)), that k2 � (k′)3/6 and that 1/k′ � ξ/20.
So Lemma 19 with ε := ξ/20 implies that P[I − 2i′0 = 2i′1 − 2i′0] ≤ (1 + ξ/20)/k′, and Claim 26
follows immediately.

The 2i′1-seeking algorithm is a deterministic algorithm which proceeds as follows: Given a drunken
segment Dj whose first small segment is Ai0 , assign every vertex of Ai0 to the vertex 2i′0 − 1 of C ′

and every vertex of Bi0 to the vertex 2i′0 of C ′. Then for every pair Ai+1, Bi+1 of small segments
in Dj , let 2i′ be the vertex of C ′ to which the vertices of Bi were assigned and let

i′′ =

{
i′ if i′ = i1;

i′ + 1 otherwise.

Assign every vertex of Ai+1 to 2i′′ − 1 and every vertex of Bi+1 to 2i′′. Note that the final vertex
of this algorithm is always 2i′1, since k′ ≤ ξm1/(6k

′m2).

Applying the algorithms. We use these algorithms to assign small segments to vertices of
C ′ as follows: Choose i′0 ∈ [k′] randomly and let 2i′0 − 1 be the initial vertex for S1. For each

17



1 ≤ j ≤ m3 − 1, use the sober algorithm to assign the segments of Sj and then use the drunken
algorithm to assign the vertices of Dj , where in each case the initial vertex of each segment is the
successor of the final vertex of the previous segment. (So for example, if the final vertex of the
drunken algorithm, when applied to Dj , is 2i∗, then the initial vertex of the sober algorithm, when
applied to Sj+1, is 2i∗ + 1.) Then assign the vertices of Sm3 using the sober algorithm and assign
the vertices of Dm3 using the 2i′1-seeking algorithm. (Recall that 2i′1 was a vertex of the chord c′.)
We explain how we assign the small segments from

⋃m2
j=m3+1 Lj later.

Claim 27. For each 1 ≤ i ≤ k′, let Xi be the number of vertices of
⋃m3
j=1 Sj assigned to the vertex

2i− 1 of C ′. Then

P
[
Xi >

1

2k′

(
m3n

m2
+
|A| − |B|

2

)
+
ξn

6k′

]
≤ 1

3k′
.

For each 1 ≤ j ≤ m3, let Yj = |Sj ∩ A| and let Xi,j be the number of vertices of Sj which are
assigned to 2i − 1. To prove the claim, we first use Claim 26 to bound E[Xi,j | Xi,j−1, . . . , Xi,1].
Let rj be the initial vertex of Sj for each j. Let B be the event Xi,j−1 = xi,j−1, . . . , Xi,1 = xi,1
for some xi,1, . . . xi,j−1. Now for 1 ≤ i′ ≤ k′ and any integer x we have P[Xi,j = x | B ∩ (rj−1 =
2i′ − 1)] = P[Xi,j = x | rj−1 = 2i′ − 1]. Hence Lemma 21 implies that E[Xi,j | Xi,j−1, . . . , Xi,1] ≤
maxk

′
i′=1 E[Xi,j | rj−1 = 2i′ − 1]. But Claim 26 implies that

E[Xi,j | rj−1 = 2i′ − 1] =

k′∑
i′′=1

E[Xi,j | rj = 2i′′ − 1]P[rj = 2i′′ − 1 | rj−1 = 2i′ − 1]

≤ 1 + ξ/20

k′

k′∑
i′′=1

E[Xi,j | rj = 2i′′ − 1] =
(1 + ξ/20)Yj

k′
.

Hence E[Xi,j | Xi,j−1, . . . , Xi,1] ≤ (1 + ξ/20)Yj/k
′. Set X ′i,j := Xi,jm2/n. Since

|Sj |
(7)

≤
(
n

m2
+
√
βn

)
−
(
ξm1

6k′m2

)(
n

4∆m1

)
≤ n

m2
,

we have that X ′i,j ∈ [0, 1], for each 1 ≤ j ≤ m3. Let

(9) µ =

m3∑
j=1

(1 + ξ/20)Yjm2

k′n
,

and note that

m3∑
j=1

Yj ≤
m3∑
j=1

|A ∩ Lj | =
1

2

m3∑
j=1

|Lj |+ sj


(7),(8)

≤
(
m3n

2m2
+
m3
√
βn

2

)
+

(
|A| − |B|

4
+
ξn

40

)
≤ m3n

2m2
+
|A| − |B|

4
+
ξn

20
.(10)

Note also that Yj ≥ (n/(4∆m1)) × (m1/2m2) = n/(8∆m2) for each 1 ≤ j ≤ m1. Thus we have
µ ≥ m3/(8∆k′)� (log k′)/ξ2. We now apply Lemma 20 with δ := ξ/20 to obtain

P

m3∑
j=1

X ′i,j > (1 + ξ/20)µ

 ≤ e− ξ2µ
1200 ≤ 1

3k′
.
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It follows that with probability at least 1− 1/3k′,

Xi

(9)

≤ (1 + ξ/20)2

k′

m3∑
i=1

Yj
(10)

≤ (1 + ξ/20)2

k′

(
m3n

2m2
+
|A| − |B|

4
+
ξn

20

)
≤ 1

2k′

(
m3n

m2
+
|A| − |B|

2

)
+
ξn

6k′
,

which proves Claim 27.

By a similar argument we have that if X ′i is the number of vertices of
⋃m3
j=1 Sj assigned to 2i,

then

P
[
X ′i >

1

2k′

(
m3n

m2
+
|B| − |A|

2

)
+
ξn

6k′

]
≤ 1

3k′

for every 1 ≤ i ≤ k′. Taken together with Claim 27 this implies that with probability at least 1/3,

Xi ≤
1

2k′

(
m3n

m2
+
|A| − |B|

2

)
+
ξn

6k′
(11)

and X ′i ≤
1

2k′

(
m3n

m2
+
|B| − |A|

2

)
+
ξn

6k′

for every 1 ≤ i ≤ k′, and hence there exists an assignment such that (11) holds.
For each m3 < j ≤ m2, let Dj be the union of the first k2 small segments of Lj and Sj the union

of the remaining small segments. We now assign the vertices of
⋃m2
j=m3+1 Lj using an algorithm

similar to that for
⋃m3
j=1 Lj , but in reverse order. That is, we first choose 1 ≤ i′′0 ≤ k′ randomly and

assign the vertices of Sm2 using the sober algorithm, but with the roles of Ai and Bi exchanged
for each i. Thus we assign the vertices of Bm1 to 2i′′0 − 1, the vertices of Am1 to 2i′′0, etc. Similarly
we use the drunken algorithm to assign the vertices of Dm2 (again with the roles of Ai and Bi
exchanged for each i), and so on until we have assigned all the vertices up to Sm3+1. (As before,
the initial vertex of any application of an algorithm is the successor of the final vertex of the previous
application of an algorithm.) Finally we use the 2i′2-seeking algorithm to assign the vertices of the
last drunken segment Dm3+1. (Recall that the final vertex of the 2i′2-seeking algorithm is always

2i′2.) Let Xi be the number of vertices of
⋃m2
j=m3+1 Sj assigned to to 2i − 1 and X ′i the number

assigned to 2i. By using a proof analogous to that of Claim 27, we can ensure that

Xi ≤
1

2k′

(
(m2 −m3)n

m2
+
|B| − |A|

2

)
+
ξn

6k′
(12)

and X ′i ≤
1

2k′

(
(m2 −m3)n

m2
+
|A| − |B|

2

)
+
ξn

6k′

for each 1 ≤ i ≤ k′.
Note that

|
m2⋃
j=1

Dj | ≤ m2 ×
ξm1

6k′m2
× (n/m1 + βn) ≤ ξn/3k′,
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and hence in total we assign at most

Xi +X ′i + |
m2⋃
j=1

Dj |

(11),(12)

≤ 1

2k′

(
m3n

m2
+
|A| − |B|

2

)
+

1

2k′

(
(m2 −m3)n

m2
+
|B| − |A|

2

)
+

2ξn

3k′

=
1

2k′
(1 + 4ξ/3)n

vertices to 2i− 1 and at most (1 + 4ξ/3)n/2k′ vertices to 2i, for each 1 ≤ i ≤ k′.

Completing the proof. This completes our definition of f2. We now check that f2 is a homo-
morphism. By properties (c) and (d) it suffices to show for each i that whenever Ai and Bi (or Bi
and Ai+1) are assigned to vertices 1 ≤ i′, j′ ≤ 2k′ of C ′, then i′j′ is an edge of C ′ ∪ {c′}. Observe
first that the sober, drunken and seeking algorithms all assign vertices in such a way that i′j′ is an
edge of C ′. Further, recall that the initial vertex of any application of an algorithm is the successor
of the final vertex of the previous application of an algorithm. So if, for example, the vertices of
Bi are assigned to the final vertex 2i∗ where Bi is the final segment assigned in an application one
of the algorithms, then the vertices of Ai+1 will be assigned to the initial vertex 2i∗+ 1 in the next
application of an algorithm.

The only pair this argument does not deal with is the pair (Bj , Aj+1), where Bj is the last small
segment of Dm3 (and hence Aj+1 is the first small segment of Dm3+1, and therefore the last to
be assigned). Now by the definition of the seeking algorithm, the vertices of Bj are assigned to
the vertex 2i′1 of C ′ and the vertices of Aj+1 are assigned to the vertex 2i′2 of C ′. Recalling that
c′ = {2i′1, 2i′2} we have that f2 is indeed a homomorphism.

Now consider f = f1 ◦ f2. Since f1 and f2 are both homomorphisms we have that f is a
homomorphism. Property (b) implies that condition (β1) holds. By (c), every edge xy not in H[S]
lies in a pair (Ai, Bi) for some i. Thus, by definition of our three algorithms, xy is mapped to an
edge {2j − 1, 2j} by f2 for some j. By definition of f1, {2j − 1, 2j} is mapped to {2j′ − 1, 2j′} by
f1 for some j′. Therefore, f satisfies (β3).

To see that condition (β2) also holds, recall that f1 assigns to each vertex 2i− 1 of C (and also
to 2i) exactly d(n2i−1 + n2i)k1/ne vertices of C ′. Hence f assigns at most

1

2k′
(1 + 4ξ/3)nd(n2i−1 + n2i)k1/ne ≤ (1 + 4ξ/3)(n2i−1 + ξn/10) +

1

2k′
(1 + 4ξ/3)n

≤ n2i−1 + ξn

vertices of H to the vertex 2i − 1 of C, for each 1 ≤ i ≤ k. Similarly f assigns at most n2i + ξn
vertices of H to the vertex 2i. �

9. Completing the Proof

In this section we use Lemmas 23 and 25 to prove Theorem 8. We use the following definition
and lemma from [3]; these allow us to prove that H embeds into G by checking some relatively
simple conditions.

Definition 28. Let H be a graph on n vertices, let R be a graph on [k], and let R′ ⊆ R. We say
that a vertex partition V (H) = (Wi)i∈[k] of H is ε-compatible with an integer partition (ni)i∈[k] of
n and R′ ⊆ R if the following holds. For i ∈ [k] let Si be the set of vertices in Wi with neighbours
in some Wj with ij /∈ E(R′) and i 6= j. Set S :=

⋃
i∈[k] Si and Ti := NH(S)∩ (Wi\S). Then for all

i, j ∈ [k] we have that
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(γ1) |Wi| = ni;
(γ2) xy ∈ E(H) for x ∈Wi and y ∈Wj implies that ij ∈ E(R);
(γ3) |Si| ≤ εni and |Ti| ≤ ε ·min{nj | i and j are in the same component of R′}.

The partition V (H) = (Wi)i∈[k] is ε-compatible with a partition V (G) = (Vi)i∈[k] of a graph G and
R′ ⊆ R if V (H) = (Wi)i∈[k] is ε-compatible with (|Vi|)i∈[k] and R′ ⊆ R.

Lemma 29 ([3], Lemma 3.12). For all d,∆, r > 0 there is a constant ε = ε(d,∆, r) such that
the following holds. Let G be a graph on n vertices and suppose that (Vi)i∈[k] is a partition of
V (G). Suppose R is an (ε, d)-reduced graph of G on V1, . . . , Vk and that R′ is a subgraph of R
whose connected components have size at most r. Assume that (Vi, Vj)G is an (ε, d)-super-regular
pair for every edge ViVj ∈ E(R′). Further, let H be a graph on n vertices with maximum degree
∆(H) ≤ ∆ that has a vertex partition V (H) = (Wi)i∈k which is ε-compatible with V (G) = (Vi)i∈[k]
and R′ ⊆ R. Then H ⊆ G. �

Lemma 29 is a consequence of the Blow-up lemma of Komlós, Sárközy and Szemerédi [19]. We
now prove Theorem 8.

Proof of Theorem 8. Firstly, note that it suffices to prove Theorem 8 under the addition assumption
that η � 1. We choose β, n0 as well as additional constants d, ε, ξ, λ as follows: Choose d � ν
as required by Lemma 23 also ensuring that d � 1/∆. Then take ε ≤ ε(d,∆, 2) as in Lemma 29,
ensuring also that ε� d. Finally choose

1/n0 � β � λ� ξ � ε,

as required by Lemmas 23 and 25.
Apply Lemma 23 to G to obtain an integer k such that ξ � 1/k � ε, a partition (ni)

2k
i=1 of n and

integers 1 ≤ i1 6= j1, i2 6= j2 ≤ k. Suppose C is the cycle 12 . . . (2k)1 with the chord c = {2i2, 2j2}.
Next we apply Lemma 25 with the partition (ni)

2k
i=1 of n as input to obtain a set S ⊆ V (H) and a

homomorphism f : H → C ∪ {c}, such that

(i) |S| ≤ ξn;
(ii) |f−1(i)| ≤ ni + ξn for all 1 ≤ i ≤ 2k;

(iii) Every edge which is not in H[S] is mapped to the edge {2i− 1, 2i}, for some 1 ≤ i ≤ k.

Let Wi := f−1(i) and n′i := |f−1(i)| for each i, and note that (n′i)
k
i=1 is a partition of n. Condition

(ii) together with Lemma 23 imply that there is a partition A′1, B
′
1, A

′
2, B

′
2, . . . , A

′
k, B

′
k of V (G) and

a spanning subgraph G′ of G which satisfy conditions (α1)–(α5).
Relabel these clusters V1, . . . , Vk such that V2i−1 := A′i and V2i := B′i for all 1 ≤ i ≤ k. So

|Vi| = n′i for all 1 ≤ i ≤ 2k. Let R be the (ε, d)-reduced graph of G′ on V1, . . . , Vk with the maximal
number of edges. Hence (α2)–(α5) imply that R contains the Hamilton cycle C ′ = V1V2 . . . V2kV1
and the chord c′ := V2i2V2j2 (we view C ′ ∪ {c′} as a copy of C ∪ {c} in R). Let R′ be the spanning
subgraph of R containing precisely the edges V2i−1V2i for 1 ≤ i ≤ k. Note that (α2) implies that
(V2i−1V2i)G′ is an (ε, d)-super-regular pair for all 1 ≤ i ≤ k.

We now check that the partition V (H) = (Wi)
2k
i=1 is ε-compatible with the partition (Vi)

2k
i=1 and

R′ ⊆ R. We defined (Vi)
2k
i=1 so that |Vi| = |Wi| for each 1 ≤ i ≤ 2k and hence condition (γ1) of

Definition 28 holds. Condition (γ2) holds since f : H → C ∪ {c} is a homomorphism and C ∪ {c}
is a subgraph of R. Note that for all 1 ≤ i ≤ 2k, Lemma 23 implies that

εn′i ≥ ε(ni − 2kξn) ≥ ε(n/3k − 2kξn) ≥ εn/4k � ξn
(i)

≥ |S|.
Furthermore, |NH(S) ∩ (Wi\S)| ≤ ∆|S| ≤ ∆ξn � εn/4k ≤ εn′j for all 1 ≤ i, j ≤ 2k. Thus,

condition (γ3) holds. Hence, Lemma 29 implies that G′ (and therefore G) contains H, as desired.
�
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[24] D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009),

65–107.
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nationaux CNRS 260 (1978), 399–401.

22



Fiachra Knox Andrew Treglown
School of Mathematics Faculty of Mathematics and Physics
University of Birmingham Charles University
Birmingham Malostranské Náměst́ı 25
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