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Abstract. An important result of Komlós [Tiling Turán theorems, Combinatorica, 2000] yields
the asymptotically exact minimum degree threshold that ensures a graph G contains an H-tiling
covering an xth proportion of the vertices of G (for any fixed x ∈ (0, 1) and graph H). We give
a degree sequence strengthening of this result which allows for a large proportion of the vertices
in the host graph G to have degree substantially smaller than that required by Komlós’ theorem.
We also demonstrate that for certain graphs H, the degree sequence condition is essentially best
possible in more than one sense.
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1. Introduction

A central branch of extremal combinatorics concerns the study of conditions that force a graph G
to contain some given substructure. For example, Turán’s famous theorem determines the number
of edges required to force a graph G to contain a copy of a fixed clique Kr on r vertices. Tutte’s
theorem characterises all those graphs G that contain a perfect matching.

The study of graph tilings has proven to be a rich topic within this area: given two graphs H and
G, an H-tiling in G is a collection of vertex-disjoint copies of H in G. An H-tiling is called perfect
if it covers all the vertices of G. Perfect H-tilings are also often referred to as H-factors, perfect
H-packings or perfect H-matchings. H-tilings can be viewed as generalisations of both the notion
of a matching (which corresponds to the case when H is a single edge) and the Turán problem (i.e.
a copy of H in G is simply an H-tiling of size one).

A cornerstone result in the area is the Hajnal–Szemerédi theorem [6] from 1970, which charac-
terises the minimum degree that ensures a graph contains a perfect Kr-tiling.

Theorem 1.1 (Hajnal and Szemerédi [6]). Every graph G whose order n is divisible by r and
whose minimum degree satisfies δ(G) ≥ (1 − 1/r)n contains a perfect Kr-tiling. Moreover, there
are n-vertex graphs G with δ(G) = (1− 1/r)n− 1 that do not contain a perfect Kr-tiling.

Although the minimum degree condition in the Hajnal–Szemerédi theorem is tight, this does
not mean one cannot strengthen this result. Indeed, Kierstead and Kostochka [7] proved an Ore-
type generalisation of Theorem 1.1 where now one replaces the minimum degree condition with
the condition that the sum of the degrees of every pair of non-adjacent vertices in G is at least
2(1− 1/r)n− 1. A conjecture of Balogh, Kostochka and Treglown [3, Conjecture 7] would, if true,
give a degree sequence strengthening of the Hajnal–Szemerédi theorem; in this conjecture one allows
for G to have almost n/r vertices of degree less than (1 − 1/r)n. An asymptotic version of this
conjecture was proven in [16].

There has also been significant interest in the minimum degree threshold that ensures a perfect
H-tiling for an arbitrary graph H. After earlier work on this topic (see e.g. [2, 9]), Kühn and
Osthus [11, 12] determined, up to an additive constant, the minimum degree that forces a perfect
H-tiling for any fixed graph H.

H.L. was supported by the Leverhulme Trust Early Career Fellowship ECF-2016-523. A.T. was supported by
EPSRC grant EP/M016641/1.
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The focus of this paper is not on perfect H-tilings, but rather on H-tilings covering an xth
proportion of a graph G (for some fixed x ∈ (0, 1)). The focal result on this topic is a theorem of
Komlós [8] which determines asymptotically the minimum degree that ensures a graph G contains
an H-tiling covering an xth proportion of its vertices. Before we can state this result, we require
two definitions. The critical chromatic number χcr(H) of a graph H is defined as

χcr(H) := (χ(H)− 1)
|H|

|H| − σ(H)
,

where σ(H) denotes the size of the smallest possible colour class in any χ(H)-colouring of H. For
all x ∈ (0, 1), define

gH(x) := x

(
1− 1

χcr(H)

)
+ (1− x)

(
1− 1

r − 1

)
.

Theorem 1.2 (Komlós [8]). Suppose H is a graph of chromatic number r. Given any η > 0, there
exists an n0 = n0(η, x,H) ∈ N such that if G is a graph on n ≥ n0 vertices and

δ(G) ≥ gH(x)n

then G contains an H-tiling covering at least (x− η)n vertices.

Note that the minimum degree condition in Theorem 1.2 is best possible in the sense that given
any fixed H and x ∈ (0, 1), one cannot replace gH(x) with any fixed g′H(x) < gH(x) (see [8,
Theorem 7] for a proof of this). A consequence of the Erdős–Stone theorem is that every n-vertex
graph G with δ(G) ≥ (1 − 1/(χ(H) − 1) + o(1))n contains a copy of H. So a way to interpret
Theorem 1.2 is that, for very small x > 0, the minimum degree threshold is governed essentially by
the value of χ(H)− 1; however, as one increases x, the value of χcr(H) plays an increasing role in
the value of the threshold.

An attractive consequence of Theorem 1.2 is the following result concerning almost perfect H-
tilings.

Theorem 1.3 (Komlós [8]). Let η > 0 and let H be a graph. Then there exists an n0 = n0(η,H) ∈
N such that every graph G on n ≥ n0 vertices with

δ(G) ≥
(

1− 1

χcr(H)

)
n

contains an H-tiling covering all but at most ηn vertices.

As with Theorem 1.2, the minimum degree condition in Theorem 1.3 is best possible in the sense
that one cannot replace the (1 − 1/χcr(H)) term here with any smaller fixed constant. Despite
this, Shoukoufandeh and Zhao [14] proved that one can strengthen the conclusion of the theorem,
to ensure the H-tiling covers all but a constant number of vertices (this constant depends only on
H).

The main result of this paper is to prove the following degree sequence strengthening of Theo-
rem 1.3.

Theorem 1.4. Let η > 0 and H be a graph with χ(H) = r. Let σ := σ(H), h := |H| and
ω := (h− σ) /(r − 1). Then there exists an n0 = n0(η,H) ∈ N such that the following holds:
Suppose G is a graph on n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ . . . ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i for all 1 ≤ i ≤ ωn

h .

Then G contains an H-tiling covering all but at most ηn vertices.
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Figure 1. The degree sequence in Theorem 1.4.

Graph Bound on d1 Bound on dωn
h

Angle of slope

C5 2n/5 3n/5 1/2
K1,t 1 n/(t+ 1) 1/t
Kt (t− 2)n/t (t− 1)n/t 1

K2,4,6 5n/12 7n/12 2/5

Figure 2. Values of the start points, end points and angles of the slope in Theo-
rem 1.4 for certain graphs.

Note that if one considers an r-partition of H with smallest vertex class of size σ = σ(H) and
set i = ωn/h then we obtain that (1− (ω + σ)/h)n + σi/ω = 1 − 1/χcr(H). Thus, Theorem 1.4
is a significant strengthening of Theorem 1.3. Indeed, Theorem 1.4 allows for up to ωn/h vertices
to have degree below that in Theorem 1.3. In particular, when H is bipartite, the degree sequence
condition in Theorem 1.4 starts at d1 ≥ 1 and allows for at least half of the vertices of H to
have degree less than that required by Komlós’ theorem. Figure 1 gives a visualisation of the
degree sequence in Theorem 1.4. Figure 2 presents some key properties of the degree sequence in
Theorem 1.4 for several graphs. Here, ‘Angle of slope’ refers to the value σ/ω.

The degree sequence in Theorem 1.4 is best possible in more than one sense for many graphs
H. For all graphs H, one cannot allow significantly more than ωn/h vertices to have degree below
the ‘Komlós threshold’, so in this sense the bound on the number of ‘small degree’ vertices in
Theorem 1.4 is tight. Further, for many graphs H, we show that the degree sequence cannot start
at a lower value and the angle of the ‘slope’ in Figure 1 is best possible. This is discussed in more
depth in Section 3.

Theorem 1.4 deals with almost perfect tilings. A natural question now is whether such a de-
gree sequence strengthening also exists for tilings covering an xth proportion of vertices, as in
Theorem 1.2. Indeed, the following result is a straightforward consequence of Theorem 1.4.

Theorem 1.5. Let x ∈ (0, 1) and H be a graph with χ(H) = r. Set η > 0. Let σ := σ(H), h := |H|
and ω := (h− σ) /(r− 1). Then there exists an n0 = n0(η, x,H) ∈ N such that the following holds:
Suppose G is a graph on n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ . . . ≤ dn such that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i for all 1 ≤ i ≤

(
h−xσ

(r−1)h

)
n.

Then G contains an H-tiling covering at least (x− η)n vertices.
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Figure 3. The degree sequence in Theorem 1.5 for x = 2/3 (long dashed), x = 1/3
(medium dashed).

Theorem 1.5 is an improvement on Theorem 1.2. Indeed, Theorem 1.5 allows for almost
(h − xσ)n/(r − 1)h vertices to have degree below gH(x)n. Observe that as x approaches 0, the
degree sequence condition in Theorem 1.5 tends towards the condition δ(G) ≥ (1 − 1/(r − 1))n,
and thus accords with the Erdős–Stone theorem.

Piguet and Saumell [13, Theorem 1.3] recently proved another generalisation of Theorem 1.2.
In their result they only require a certain fraction of the vertices to satisfy the degree condition
of Theorem 1.2, and all other vertices have no restriction on their degree (so some could even be
isolated vertices). Note though that our result allows for more vertices to have small degree (i.e.
smaller than the bound in Theorem 1.2), at a price of having some restriction of the degrees of
these vertices. In the case of almost perfect H-tilings, Theorem 1.4 allows a large proportion of the
vertices to have small degree, whilst in this case [13, Theorem 1.3] corresponds precisely to Komlós’
theorem (Theorem 1.3 above).

As well as considering minimum degree and degree sequence conditions, it is also natural to
seek conditions on the density of a graph G that forces an H-tiling covering a given fraction of
the vertices of G. We remark though that only limited progress has been made on this question
(though Allen, Böttcher, Hladký and Piguet [1] did resolve this problem in the case of K3-tilings).

Organisation of the paper. The paper is organised as follows. In the next section we provide
some essential notation and definitions. Then in Section 3 we give extremal examples for both
Theorems 1.4 and 1.5. We introduce an ‘error term’ version (Theorem 4.1) of Theorem 1.4 in
Section 4 and show that it implies Theorem 1.4. Szemerédi’s Regularity lemma and several auxiliary
results are presented in Section 5. Then in Section 6 we provide the tools that we will need to prove
Theorem 4.1. We prove a result that iteratively constructs an almost perfect H-tiling and then use
this result to prove Theorem 4.1 in Section 7. To conclude Section 7, we show that Theorem 1.4
implies Theorem 1.5.
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2. Notation and Definitions

Let G be a graph. We define V (G) to be the vertex set of G and E(G) to be the edge set
of G. Let X ⊆ V (G). Then G[X] is the graph induced by X on G and has vertex set X and
edge set E(G[X]) := {xy ∈ E(G) : x, y ∈ X}. We also define G \ X to be the graph with
vertex set V (G) \ X and edge set E(G \ X) := {xy ∈ E(G) : x, y ∈ V (G) \ X}. For each
x ∈ V (G), we define the neighbourhood of x in G to be NG(x) := {y ∈ V (G) : xy ∈ E(G)} and
define dG(x) := |NG(x)|. We drop the subscript G if it is clear from context which graph we are
considering. We write dG(x,X) for the number of edges in G that x sends to vertices in X. Given
a subgraph G′ ⊆ G, we will write dG(x,G′) := dG(x, V (G′)). Let A,B ⊆ V (G) be disjoint. Then
we define eG(A,B) := |{xy ∈ E(G) : x ∈ A, y ∈ B}|.

Let t ∈ N. We define the blow-up G(t) to be the graph constructed by first replacing each vertex
x ∈ V (G) by a set Vx of t vertices and then replacing each edge xy ∈ E(G) with the edges of the
complete bipartite graph with vertex sets Vx and Vy.

Let v ∈ N. We will refer to a vertex class of size v of G as a v-class of G. Set r, σ, ω ∈ N and
σ < ω. We define the r-partite bottle graph B with neck σ and width ω to be the complete r-partite
graph with one σ-class and (r − 1) ω-classes.

Let i ∈ N and H1, H2, . . . ,Hi be a collection of graphs. We define an (H1, H2, . . . ,Hi)-tiling in
G to be a collection of vertex-disjoint copies of graphs from the set {H1, H2, . . . ,Hi} in G. An
(H1, H2, . . . ,Hi)-tiling is called perfect if it covers all vertices in G.

We write 0 < a� b� c < 1 to mean that we can choose the constants a, b, c from right to left.
More precisely, there exist non-decreasing functions f : (0, 1] → (0, 1] and g : (0, 1] → (0, 1] such
that for all a ≤ f(b) and b ≤ g(c) our calculations and arguments in our proofs are correct. Larger
hierarchies are defined similarly. Note that a� b implies that we may assume e.g. a < b or a < b2.

3. Extremal Examples

In this section we present three extremal examples. The first demonstrates that the ‘slope’ of
the degree sequence in Theorem 1.4 is best possible for bottle graphs. The second shows that for
many graphs H, the degree sequence in Theorem 1.4 ‘starts’ at the correct place. The third shows
that, for any graph H, to ensure an H-tiling covering at least (x − η)n vertices we cannot have
significantly more than (h − xσ)n/(r − 1)h vertices with degree below the ‘Komlós threshold’ of
gH(x)n.

Extremal Example 1. Set η ∈ R. Let B be an r-partite bottle graph with neck σ and width ω,
where b := |B|. The following extremal example G on n vertices demonstrates that Theorem 1.4 is
best possible for such graphs B, in the sense that G satisfies the degree sequence of Theorem 1.4
except for a small linear part that only just fails the degree sequence, but does not contain a B-tiling
covering all but at most ηn vertices.

Proposition 3.1. Set η ∈ R and n ∈ N such that 0 < 1/n � η � 1. Let B be a bottle graph
with neck σ and width ω, where b := |B|. Additionally assume that b divides n. Then for any
1 ≤ k < ωn/b − 2ηn, there exists a graph G on n vertices whose degree sequence d1 ≤ . . . ≤ dn
satisfies

di ≥
(

1− ω + σ

b

)
n+

σ

ω
i for all i ∈ {1, . . . , k − 1, k + 2ηn+ 1, . . . , ωn/b},

di =

(
1− ω + σ

b

)
n+

⌈σ
ω
k
⌉

for all k ≤ i ≤ k + 2ηn,

but such that G does not contain a B-tiling covering all but at most ηn vertices.
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Figure 4. An example of a graph G in Proposition 3.1 where σ = 1, ω = 2.

Proof. Let G be the graph on n vertices with r vertex classes V1, . . . , Vr where |V1| = σn/b and
|V2| = |V3| = . . . = |Vr| = ωn/b. Label the vertices of V1 as a1, a2, . . . , aσn/b. Similarly, label the
vertices of V2 as c1, c2, . . . , cωn/b. The edge set of G is constructed as follows.

Firstly, let G have the following edges:

• All edges with an endpoint in V1 and the other endpoint in V (G) \ V2, in particular G[V1]
is complete;
• All edges with an endpoint in Vi and the other endpoint in V (G) \ (V1 ∪ Vi) for 2 ≤ i ≤ r;
• Given any 1 ≤ i ≤ ωn/b and j ≤ dσi/ωe include all edges ciaj .

So at the moment G does satisfy the degree sequence in Theorem 1.4; we therefore modify G
slightly. For all k + 1 ≤ i ≤ k + 2ηn and dσk/ωe+ 1 ≤ j ≤ dσ(k + 2ηn)/ωe delete each edge
between ci and aj . One can easily check that G satisfies the degree sequence in the statement of
the proposition. In particular, the vertices of degree

(
1− ω+σ

b

)
n+ dσωke are ck, . . . , ck+2ηn.

Define A := {a1, . . . , adσk/ωe} and C := {c1, . . . , ck+2ηn}. Note that there are no edges between
C and V1 \A in G.

Claim 3.2. Let T be a B-tiling of G. Then T does not cover at least 3ηn/2 vertices in C.

Consider any copy B′ of B in G that contains an element of C. As C is an independent set in
G, B′ contains at most ω elements from C. Since there are no edges between C and V1 \ A in G,
B′ contains at least σ vertices in A. This implies that at most dσk/ωe(ω/σ) < k+ ηn/2 vertices in
C can be covered by T . Since |C| = k+ 2ηn, we have that T does not cover at least 3ηn/2 vertices
in C. Therefore, Claim 3.2 holds. Hence G does not have a B-tiling covering all but at most ηn
vertices. �

Proposition 3.1 implies that for bottle graphs B, the degree sequence in Theorem 1.4 cannot
be lowered significantly in a small part of the degree sequence and still ensure an almost perfect
B-tiling; so the ‘slope’ of the degree sequence in Theorem 1.4 cannot be improved upon. It would
be interesting to find other classes of graphs H for which the slope in Theorem 1.4 is also best
possible; we suspect though that there are graphs H where the slope is not best possible.

Extremal Example 2. The next example shows that for many graphs H, Theorem 1.4 is best
possible in the sense that we cannot start the degree sequence at a significantly lower value.
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Proposition 3.3. Let H be an r-partite graph so that, for every x ∈ V (H), H[N(x)] is (r − 1)-
partite. Let h := |H|, σ := σ(H) and set ω := (h − σ)/(r − 1). Additionally suppose σ < ω. Let
0 < 1/n� η � (ω − σ)/h where h divides n. Then there is an n-vertex graph G with

(i) bηnc+ 1 vertices of degree (1− ω+σ
h )n,

(ii) all other vertices have degree at least (1− 1/χcr(H))n = (1− ω/h)n,

and G does not have an H-tiling covering all but at most ηn vertices.

Proof. Let G be the complete r-partite graph on n vertices with vertex classes V1, . . . , Vr where
|V1| = σn/h + bηnc + 1, |V2| = ωn/h − bηnc − 1 and |V3| = . . . = |Vr| = ωn/h. Let V ′ ⊆ V1 be of
size bηnc+1. Delete from G all edges with one endpoint in V ′ and the other in V2. By construction
G satisfies (i) and (ii). Note that since the neighbourhood of any x ∈ V ′ induces an (r− 2)-partite
subgraph of G, no vertex in V ′ lies in a copy of H in G. So G does not have an H-tiling covering
all but at most ηn vertices. �

Extremal Example 3. Set η ∈ R and x ∈ (0, 1]. Let H be a graph with χ(H) =: r. Let h := |H|,
σ := σ(H) and set ω := (h− σ)/(r− 1). Define gH(1) := 1−ω/h. We give an extremal example G
on n vertices which satisfies the degree sequence of Theorem 1.5 except that (h−xσ)n/(r−1)h+ηn
vertices have degree at most (gH(x)−η)n, but does not contain an H-tiling covering at least (x−η)n
vertices.

Proposition 3.4. Set η ∈ R and x ∈ (0, 1]. Let H be a graph with χ(H) =: r. Let h := |H|,
σ := σ(H) and set ω := (h − σ)/(r − 1). Then there exists a graph G on n vertices whose degree
sequence d1 ≤ . . . ≤ dn satisfies

di = (gH(x)− η)n for all i ≤ h− xσ
(r − 1)h

n+ ηn,

di ≥ gH(x)n for all i >
h− xσ

(r − 1)h
n+ ηn,

but such that G does not contain an H-tiling covering at least (x− η)n vertices.

Proof. Let G be the complete r-partite graph on n vertices with vertex classes V1, . . . , Vr such
that

• |V1| = xσn
h − ηn,

• |V2| = (h−xσ)n
(r−1)h + ηn,

• |V3| = . . . = |Vr| = (h−xσ)n
(r−1)h .

Consider any H-tiling T of G. Observe that T can contain at most xn/h − ηn/σ copies of H.
Indeed, to attain this bound one requires that all colour classes of size σ in copies of H are placed
into V1. Hence at most x(r − 1)ωn/h − (r− 1)ωηn/σ vertices are covered by T in V2 ∪ . . . ∪ Vr.
Thus at most (x − η)n − (r − 1)ωηn/σ vertices are covered by T . Hence G does not contain an
H-tiling covering at least (x− η)n vertices �

4. Deriving Theorem 1.4 from a weaker result

To prove Theorem 1.4 we will first prove the following ‘error term’ version.

Theorem 4.1. Let η > 0 and H be a graph with χ(H) = r. Let h := |H|, σ := σ(H) and set
ω := (h−σ)/(r−1). Then there exists an n0 = n0(η,H) ∈ N such that the following holds: Suppose
G is a graph on n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ . . . ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h .
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Then G has an H-tiling covering all but at most ηn vertices.

Theorem 4.1 implies Theorem 1.4. Indeed, a simple argument (as in [8]) allows us to remove the
error terms.

Proof of Theorem 1.4. Set 0 < τ � η, 1/h and let n ∈ N be sufficiently large. Suppose G is an
n-vertex graph as in the statement of Theorem 1.4. Let A be a set of τn vertices and define G∗ to be
the graph with vertex set V (G)∪A and edge set E(G∗) := E(G)∪{xy : x ∈ V (G)∪A, y ∈ A, x 6= y}.
Then G∗ has degree sequence dG∗,1 ≤ dG∗,2 ≤ . . . ≤ dG∗,(1+τ)n where

dG∗,i ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ τn ≥

(
1− ω + σ

h

)
(1 + τ)n+

(σ
ω
i+

στ

h
n
)

+
ωτ

h
n

for all 1 ≤ i ≤ ωn
h and

dG∗,i ≥
(

1− ω + σ

h

)
(1 + τ)n+

σ

ω
i+

ωτ

2h
(1 + τ)n

for all ωn
h ≤ i ≤ ω(1+τ)n

h . By Theorem 4.1 we have that G∗ has an H-tiling T covering all but at
most ωτ

2h (1 + τ)n vertices.
Now, remove every copy of H from T that contains a vertex in A. Then we have removed at

most (h− 1)τn vertices from V (G) ⊂ V (G∗). Moreover, this implies that there exists an H-tiling
in G covering all but at most (h− 1)τn+ ωτ

2h (1 + τ)n vertices. Since (h− 1)τn+ ωτ
2h (1 + τ)n < ηn,

Theorem 1.4 holds. �

Outline of the proof of Theorem 4.1. The aim of the rest of the paper is to prove Theorem 4.1;
we now outline the proof of this result. We first show that it suffices to prove Theorem 4.1 in the case
when H = B, a bottle graph with neck σ and width ω (where σ < ω). In particular, Theorem 4.1
is already known in the case when H is a balanced r-partite graph [16].

We then employ a variant of an idea of Komlós [8]. Roughly speaking the idea is as follows:
Let B∗ be a suitably large blown-up copy of B. We apply the Regularity lemma (Lemma 5.2)
to obtain a reduced graph R of G. If R contains an almost perfect B∗-tiling then one can rather
straightforwardly conclude that G contains an almost perfect B-tiling, as required (for this we apply
Lemma 6.1). Otherwise, suppose that the largest B∗-tiling in R covers precisely d ≤ (1− o(1))|R|
vertices. We then show that, for some t ∈ N, there is a B∗-tiling in the blow-up R(t) of R covering
substantially more than dt vertices. Thus, crucially, the largest B∗-tiling in R(t) covers a higher
proportion of vertices than the largest B∗-tiling in R. By repeating this argument, we obtain a
blow-up R′ of R that contains an almost perfect B∗-tiling. We then show that this implies G
contains an almost perfect B-tiling, as desired.

Other applications of this general method have been used in the past [4, 5, 16]. Note however,
our approach has different challenges. Indeed, the process of moving from a B∗-tiling B in R to
a proportionally larger B∗-tiling in R(t) is rather subtle. In particular, what we would like to
do is conclude that one can find a tiling B0 (not necessarily of copies of B∗) in R that covers a
larger proportion of the vertices in R and when one takes a suitable blow-up R(t) of R, then B0

corresponds to a B∗-tiling in R(t). However, the vertices in R that are uncovered by B could
perhaps all be ‘small degree’ vertices (i.e. they do not have degree as large as that in Theorem 1.3).
This is a barrier to finding such a special tiling B0. (Intuitively, one can imagine that if one has
large degree vertices outside of B then one can glue such vertices onto B in such a way to obtain
our desired tiling B0.) In this case, one has to (through perhaps many steps) modify B and then
blow-up R to obtain an intermediate blow-up R(t′) of R such that (i) there is a B∗-tiling B′ in
R(t′) that covers the same proportion of vertices compared to the tiling B in R and (ii) many of
the vertices in R(t′) uncovered by B′ are now such that they can be ‘glued’ onto B′ to obtain our
desired larger tiling B0.
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Despite these technicalities the proof of Theorem 4.1 is perhaps surprisingly short. The main
work of the proof is encoded in Lemma 7.1, which ensures one can modify the tiling B as above.

5. Szemerédi’s Regularity lemma and auxiliary results

A key tool in the proof of Theorem 4.1 is Szemerédi’s Regularity lemma [15]. To state this lemma
we will need the following notion of ε-regularity.

Definition 5.1. Let G = (A,B) be a bipartite graph with vertex classes A and B. We define the
density of G to be

dG(A,B) :=
eG(A,B)

|A||B|
.

Set ε > 0. We say that G is ε-regular if for all X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B|
we have that |dG(X,Y )− dG(A,B)| < ε.

Lemma 5.2. (Degree form of Szemerédi’s Regularity lemma). Let ε ∈ (0, 1) and M ′ ∈ N. Then
there exist natural numbers M and n0 such that for any graph G on n ≥ n0 vertices and any
d ∈ (0, 1) there is a partition of the vertices of G into subsets V0, V1, . . . , Vk and a spanning subgraph
G′ of G such that the following hold:

• M ′ ≤ k ≤M ;
• |V0| ≤ εn;
• |V1| = . . . = |Vk| =: q;
• dG′(x) > dG(x)− (d+ ε)n for all x ∈ V (G);
• e(G′[Vi]) = 0 for all i ≥ 1;
• For all 1 ≤ i, j ≤ k with i 6= j the pair (Vi, Vj)G′ is ε-regular and has density either 0 or at

least d.

We call V1, . . . , Vk the clusters of our partition, V0 the exceptional set and G′ the pure graph.
We define the reduced graph R of G with parameters ε, d and M ′ to be the graph whose vertex set
is V1, . . . , Vk and in which ViVj is an edge if and only if (Vi, Vj)G′ is ε-regular with density at least
d. Note also that |R| = k.

The proof of the next result is analogous to that of Lemma 5.2 in [16]. It states that the degree
sequence of G in Theorem 4.1 is ‘inherited’ by its reduced graph R.

Lemma 5.3. Set M ′, n0 ∈ N and ε, d, η, b, ω, σ to be positive constants such that 1/n0 � 1/M ′ �
ε � d � η � 1/b and where ω + σ ≤ b. Suppose G is a graph on n ≥ n0 vertices with degree
sequence d1 ≤ d2 ≤ . . . ≤ dn such that

(1) di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .

Let R be the reduced graph of G with parameters ε, d and M ′ and set k := |R|. Then R has degree
sequence dR,1 ≤ dR,2 ≤ . . . ≤ dR,k such that

(2) dR,i ≥
b− ω − σ

b
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

b .

Proof. Let V1, . . . , Vk be the clusters of G and V0 the exceptional set, and let G′ be the pure
graph of G. Set q := |V1| = . . . = |Vk|. Clearly we may assume dR(V1) ≤ dR(V2) ≤ . . . ≤ dR(Vk).

Now consider any i ≤ ωk
b . Set S := ∪1≤j≤iVj . Then |S| = qi ≤ ωqk

b ≤
ωn
b . Thus by (1) there

exists a vertex x ∈ S such that dG(x) ≥ dqi ≥ b−ω−σ
b n +

(
σ
ω

)
qi + ηn. Suppose that x ∈ Vj where

9



1 ≤ j ≤ i. Since we have that kq ≤ n, Lemma 5.2 implies that

dR(Vj) ≥
dG′(x)− |V0|

q
≥ 1

q

(
b− ω − σ

b
n+

(σ
ω

)
qi+ ηn− (d+ 2ε)n)

)
≥ b− ω − σ

b
k +

σ

ω
i+

ηk

2
.

Since dR,i = dR(Vi) ≥ dR(Vj) we have that (2) holds. �

We will also apply the following well-known fact.

Fact 5.4. Let 0 < ε < α and ε′ := max{ε/α, 2ε}. Let (A,B) be an ε-regular pair of density d.
Suppose A′ ⊆ A and B′ ⊆ B where |A′| ≥ α|A| and |B′| ≥ α|B|. Then (A′, B′) is an ε′-regular pair
with density d′ where |d′ − d| < ε.

Lemma 5.5. (Key Lemma [10]) Suppose that 0 < ε < d, that q, t ∈ N and that R is a graph where
V (R) = {v1, . . . , vk}. We construct a graph G as follows: Replace every vertex vi ∈ V (R) by a
set Vi of q vertices and replace each edge of R by an ε-regular pair of density at least d. For each
vi ∈ V (R), let Ui denote the set of t vertices in R(t) corresponding to vi. Let H be a subgraph of
R(t) with maximum degree ∆, and set h := |H|. Set δ := d − ε and ε0 := δ∆/(2 + ∆). If ε ≤ ε0

and t− 1 ≤ ε0q then there are at least (ε0q)
h labelled copies of H in G so that if x ∈ V (H) lies in

Ui, then x is embedded into Vi in G.

6. Tools for proving Theorem 4.1

In this section we provide further tools that we will need to prove Theorem 4.1. The following
lemma is a special case of Lemma 11 in [8] (which in turn is easily implied by the Key lemma
above).

Lemma 6.1. Set 0 < β < 1/2 and let B be the bottle graph with neck σ and width ω. Set d ∈ (0, 1).
Then there exists an ε′ > 0 such that for all ε ≤ ε′ the following holds for all q ∈ N: Let G be
a graph constructed from B by replacing every vertex of B by q vertices and replacing the edges
of B with ε-regular pairs of density at least d. Then G has a B-tiling covering all but at most a
β-proportion of the vertices in G.

Given a bottle graph B, the next lemma ensures various blown-up copies of graphs contain
perfect B-tilings.

Lemma 6.2. Set m ∈ N. Let B be an r-partite bottle graph with neck σ and width ω, where
b := |B| and σ < ω. Define B′ to be the r-partite bottle graph with neck σ and width ω − 1 and
let B∗ := B(m). Define t := (ω − σ)b. Then B(mt), B∗(mt), B′(mt) and Kr(mt) all have perfect
B∗-tilings.

Proof. Clearly B(mt) and B∗(mt) both have perfect B∗-tilings. It remains to show that B′(mt)
and Kr(mt) have perfect B∗-tilings.

For Kr(mt), tile (ω − σ)r copies of B∗ into Kr(mt) such that their (σm)-classes are distributed
evenly amongst the r vertex classes of Kr(mt). Indeed, we can view this as tiling (ω−σ) collections
of r copies of B∗ into Kr(mt) such that, for each collection C, each vertex class of Kr(mt) contains
the (σm)-class of precisely one copy of B∗ in C.

For B′(mt), firstly tile (ω−1−σ)b vertex-disjoint copies of B∗ into B′(mt) such that each (σm)-
class is placed into the (σmt)-class in B′(mt). So our current B∗-tiling covers all but σmt−σm(ω−
1−σ)b = σmb vertices in the (σmt)-class in B′(mt) and all but (ω−1)mt−ωm(ω−1−σ)b = σmb
vertices in each (ωmt)-class in B′(mt). Then the remaining vertices to be covered in B′(mt) form
a Kr(σmb) which can be tiled with σr copies of B∗. �
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The next result states that the degree sequence of G in Theorem 4.1 is inherited by any blown-up
copy of G.

Proposition 6.3. Let n, s ∈ N and b, ω, σ > 0 such that ωn > b and ω+σ ≤ b. Set η > 0. Suppose
G is a graph on n vertices with degree sequence dG,1 ≤ dG,2 ≤ . . . ≤ dG,n such that

dG,i ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .

Then Ḡ := G(s) has degree sequence dḠ,1 ≤ dḠ,2 ≤ . . . ≤ dḠ,ns such that

dḠ,i ≥
b− ω − σ

b
ns+

σ

ω
i+
(
ηn− σ

ω

)
s for all 1 ≤ i ≤ ωns

b .

Proof. For any 1 ≤ j ≤ ns we see that

dḠ,j = s · dG,dj/se.

Suppose that j ≤ ωns
b − s. Then dj/se ≤ ωn

b and we have

dḠ,j ≥
b− ω − σ

b
ns+

σ

ω
dj/ses+ ηns ≥ b− ω − σ

b
ns+

σ

ω
j + ηns.

In particular, if we take any i ≤ ωns
b we have

dḠ,i ≥
b− ω − σ

b
ns+

σ

ω
(i− s) + ηns =

b− ω − σ
b

ns+
σ

ω
i+
(
ηn− σ

ω

)
s.

�

The following result acts as a springboard from which to begin the proof of Lemma 7.1.

Proposition 6.4. Set η > 0 and m ∈ N, and let B be an r-partite bottle graph with neck σ and
width ω, where b := |B|. Define B∗ := B(m). Then there exists n0 ∈ N such that the following
holds. Suppose G is a graph on n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ . . . ≤ dn where

di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .

Then there exists a copy of B∗ in G.

Proof. Set ∆ := ∆(B∗). Let n be sufficiently large and define constants ε, d > 0 and M ′ ∈ N such
that 0 < 1/n � 1/M ′ � ε � d � 1/b, η, 1/∆. Let G be an n-vertex graph as in the statement
of the proposition. Applying Lemma 5.2 with parameters ε, d and M ′ to G, we obtain clusters
V1, . . . , Vk, an exceptional set V0 and a pure graph G′. Set q := |V1| = . . . = |Vk|. Let R be the
reduced graph of G with parameters ε, d and M ′, where k := |R|. By Lemma 5.3 we have that R
has degree sequence dR,1 ≤ dR,2 ≤ . . . ≤ dR,k where

(3) dR,i ≥
b− ω − σ

b
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

b
.

By doing the following steps, we find a set {x1, . . . , xr} ⊆ V (R) such that {x1, . . . , xr} induces a
copy of Kr in R:

Step 1: Choose a vertex x1 ∈ V (R) such that

dR(x1) ≥ k − ω

b
k +

ηk

3
.

Such a vertex exists by (3).
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Step i for each i ∈ {2, . . . , r− 1}: We have that {x1, x2, . . . , xi−1} induces a copy of Ki−1 in R and

dR(x1), dR(x2), . . . , dR(xi−1) ≥ k − ω

b
k +

ηk

3
.

Let NR(x1, x2, . . . , xi−1) := NR(x1) ∩NR(x2) ∩ . . . ∩NR(xi−1). Then

|NR(x1, x2, . . . , xi−1)| ≥ k − (i− 1)ω

b
k +

(i− 1)ηk

3

≥ b− (r − 2)ω

b
k +

(i− 1)ηk

3
=
ω + σ

b
k +

(i− 1)ηk

3
.

Here the last equality follows as b = σ+(r−1)ω. Hence by (3) there exists y ∈ NR(x1, x2, . . . , xi−1)

such that dR(y) ≥ k − ω
b k + ηk

3 . Let xi := y.

Step r: We have that {x1, x2, . . . , xr−1} induces a copy of Kr−1 in R. Moreover,

|NR(x1, x2, . . . , xr−1)| ≥ σ

b
k +

(r − 1)ηk

3
.

Choose xr to be any vertex in NR(x1, x2, . . . , xr−1).
Therefore there exists a copy of Kr in R, which implies that there exists a copy of B∗ in R(ωm).

By Lemma 5.5 we have that there exists a copy of B∗ in G. �

A crucial tool in the proof of Theorem 4.1 is Lemma 7.1 below. Before stating this lemma, we
need two more definitions.

Definition 6.5. Set ` ∈ N. Let G be a graph on n vertices and B be a bottle graph with neck σ
and width ω. Suppose that there exists a B-tiling T of G and let {z1, . . . , z`} ⊆ V (G) \ V (T ). We
say that {z1, . . . , z`} is an expanding set of size ` for T in G if the following is true: there exists an
injection f : {z1, . . . , z`} → T such that zi has a neighbour in every ω-vertex class of f(zi) for each
1 ≤ i ≤ `.
Definition 6.6. Set k, `,m ∈ N. Let G be a graph on n vertices and let (v1, v2, . . . , vn) be an
ordering of the vertices of G. Let B be a bottle graph with neck σm and width ωm. Suppose that
there exists a B-tiling T of G and let {z1, . . . , z`} ⊆ V (G) \ V (T ). Denote by ΩT the set of all
vertices in V (G) that belong to ωm-classes of copies of B in T . Let z ∈ {z1, . . . , z`} and y ∈ ΩT ,
and denote by By the copy of B in T that contains y. Then there exist 1 ≤ i, j ≤ n such that
z := vi, y := vj and i 6= j. We say that (z, y) is a k-swapping pair with respect to (v1, . . . , vn) if
the following is true: z is adjacent to at least σ vertices in the σm-class of By; z is adjacent to
at least ω vertices in each ωm-class of By that does not contain y; and j ≥ i + k. We say that
{z1, . . . , z`} is a k-swapping set of size ` for T in G with respect to (v1, . . . , vn) if there exists a set
of ` vertices {y1, . . . , y`} ⊆ ΩT such that (zi, yi) is a k-swapping pair with respect to (v1, . . . , vn)
for each 1 ≤ i ≤ ` and Byp 6= Byq for all p 6= q.

Suppose B is a B-tiling in a reduced graph R. Very roughly speaking the purpose of expanding
sets is to extend B to a larger tiling whilst swapping sets allow us to ‘rotate’ which vertices are
uncovered by our tiling (which helps for future expansion of B to a larger tiling).

7. Almost perfect H-tilings in graphs

Lemma 7.1. Let B be an r-partite bottle graph with neck σ and width ω, where b := |B|. Set
η, γ > 0 and n,m ∈ N such that 0 < 1/n � γ � 1/m � η � 1/b. Set B∗ := B(m). Let G be a
graph on n vertices with degree sequence d1 ≤ d2 ≤ . . . ≤ dn where

di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .
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Let V (G) = {v1, . . . , vn} such that dG(vi) = di for all 1 ≤ i ≤ n. Suppose the largest B∗-tiling in
G covers precisely n′ ≤ (1− η)n vertices. Then for any B∗-tiling T covering n′ vertices in G there
exists an expanding set of size γn for T in G or an ωγn

σ -swapping set of size γn for T in G with
respect to (v1, . . . , vn).

Proof. By repeatedly applying Proposition 6.4, we see that n′ ≥ ηn/2. Define a bijection
I : V (G) → [n] where I(x) = i implies that dG(x) = di. Let V (G) := {v1, . . . , vn} such that
I(vi) = i. Set n′′ := n − n′ and let G′′ := G \ V (T ). Let V (G′′) = {x1, . . . , xn′′} where I(x1) <
I(x2) < . . . < I(xn′′). For each 1 ≤ i ≤ n′′, set si := I(xi). Then dG(xi) = dsi . Choose j to be the
largest integer such that

dG(xj) ≤
b− ω
b

n+ (η − 2γ)n.

Notice that sj ≤ ωn/b. We will refer to x1, . . . , xj as small vertices and xj+1, . . . , xn′′ as big vertices.
Case 1: Suppose we have γn big vertices z1, . . . , zγn ∈ V (G′′) such that

dG(zi, G
′′) ≤ b− ω

b
n′′ +

ηn

4
for all 1 ≤ i ≤ γn.(4)

Then

dG(zi, T ) ≥ b− ω
b

n′ +
ηn

4
for all 1 ≤ i ≤ γn.

Set ω∗ := ωm. For each 1 ≤ i ≤ γn, we see that zi can be adjacent to at most a b−ω
b -proportion

of the vertices in T without having a neighbour in each ω∗-class of some copy of B∗ in T . Since
γ � 1/m� η � 1/b, for each 1 ≤ i ≤ γn there are at least(

b−ω
b n′ + ηn

4

)
−
(
b−ω
b n′

)
ω∗

=
ηn

4ω∗
≥ γn

copies of B∗ in T that have at least one neighbour of zi in each of their ω∗-classes. Thus we can
define an injection f : {z1, . . . , zγn} → T such that zi has a neighbour in each ω∗-class of f(zi) for
each 1 ≤ i ≤ γn. Hence {z1, . . . , zγn} is an expanding set of size γn for T in G.

Case 2: We may assume there does not exist an expanding set of size γn for T in G.
In particular, there are at most γn− 1 vertices in V (G′′) that have a neighbour in every ω∗-class

of γn copies of B∗ in T . (Note that these could be small or big vertices.) Remove such vertices
from V (G′′) and call the remaining graph G′′1. In particular, no big vertex in G′′1 satisfies (4). Set
n′′1 := |G′′1|.

Subcase A: Suppose we have γn small vertices xi1 , . . . , xiγn ∈ V (G′′1) such that

(5) dG(xi` , G
′′
1) ≤ b− ω − σ

b
n′′1 +

σ

ω
i` + 2γn for all 1 ≤ ` ≤ γn.

Then by (5) and the degree sequence condition of the lemma, we have

(6) dG(xi` , T ) ≥ b− ω − σ
b

n′ +
(σ
ω
si` −

σ

ω
i`

)
+
ηn

2
for all 1 ≤ ` ≤ γn.

Let k ∈ {1, . . . γn}. Denote by Ω∗T the set of all vertices in G that belong to ω∗-classes of copies
of B∗ in T . Set σ∗ := σm. We aim to count the number of vertices y ∈ Ω∗T such that (xik , y) is
an ωγn

σ -swapping pair (with respect to (v1, . . . , vn)). Let T1 denote the subcollection of copies B1

of B∗ in T such that xik is adjacent to a vertex in every ω∗-class of B1. Then since we removed
earlier all vertices that have a neighbour in every ω∗-class of γn copies of B∗ in T , we have

dG(xik , T1) ≤ (γn− 1)bm.

Suppose y ∈ Ω∗T and let B∗y be the copy of B∗ in T containing y. We say y is swappable with xik
if xik is adjacent to at least σ vertices in the σ∗-class of B∗y and at least ω vertices in each ω∗-class
of B∗y that does not contain y. Denote the set of vertices that are swappable with xik by S(xik).
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Let T2 denote the subcollection of copies B2 of B∗ in T \ T1 such that B2 does not contain any
vertex in S(xik). Then

dG(xik , T2) ≤ (bm− ωm− σm+ σ − 1)|T2|.

Note that the −ωm term is present since xik cannot be adjacent to a vertex in every ω∗-class of
any copy of B∗ in T \ T1. Let T3 := T \ (T1 ∪ T2). Then

dG(xik , T3) ≤ (bm− ωm)|T3|.

Observe that |T1|+ |T2|+ |T3| = n′/bm. Then

(7) dG(xik , T ) = dG(xik , T1)+dG(xik , T2∪T3) ≤ (γn−1)bm+

(
b− ω − σ

b
n′ +

(σ − 1)

bm
n′
)

+σm|T3|.

Using (6) and (7) we see that

|T3| ≥
sik − ik
ωm

+
ηn

2σm
− (γn− 1)b

σ
− (σ − 1)n′

bσm2
≥ sik − ik

ωm
+

ηn

8σm
,

where the the last inequality follows as γ � 1/m� η � 1/b.
Note that as T3 ∩ T2 = ∅, every copy B3 of B∗ in T3 must contain a vertex from S(xik). By

definition of swappable, this in fact implies that every copy B3 of B∗ in T3 must contain ω∗ vertices
from S(xik). Hence there are at least sik−ik+ ωηn

8σ vertices in S(xik). Not all vertices in S(xik) may
form an ωγn/σ-swapping pair with xik (with respect to (v1, . . . , vn)). Indeed, there are at most
sik − ik + ωγn

σ vertices y ∈ S(xik) with I(y) < sik + ωγn
σ (and so do not form an ωγn/σ-swapping

pair with xik). Hence, since γ � 1/m, η, 1/b, there are at least

ωηn

16σ
≥ bmγn

vertices y ∈ Ω∗T such that (xik , y) is an ωγn
σ -swapping pair. Therefore, since k ∈ {1, . . . , γn} was

arbitrary, for each ` ∈ {1, . . . , γn} there exist at least bmγn vertices y ∈ Ω∗T such that (xi` , y) is
an ωγn

σ -swapping pair. Hence there exists a set of vertices {y1, . . . , yγn} ⊆ Ω∗T such that (xi` , y`) is
an ωγn

σ -swapping pair for each 1 ≤ ` ≤ γn and B∗yi 6= B∗yj for all i 6= j. Thus {xi1 , . . . , xiγn} is an
ωγn
σ -swapping set of size γn for T in G.
Subcase B: Assume there does not exist an ωγn

σ -swapping set of size γn for T in G.
Then there are at most γn− 1 small vertices x ∈ V (G′′1) that satisfy (5). Remove such vertices

from V (G′′1), call the remaining graph G′′2 and set n′′2 := |G′′2|. Then for every small vertex xi ∈
V (G′′2) we have

dG′′2 (xi) ≥
b− ω − σ

b
n′′2 +

σ

ω
i+ γn′′2.

For every big vertex y ∈ V (G′′2), recall that y does not satisfy (4). So since |G′′ \ G′′2| ≤ 2γn, we
have

dG′′2 (y) ≥ b− ω
b

n′′2 + γn′′2.

Thus, G′′2 has degree sequence dG′′2 ,1 ≤ dG′′2 ,2 ≤ . . . ≤ dG′′2 ,n′′2 such that

dG′′2 ,i ≥
b− ω − σ

b
n′′2 +

σ

ω
i+ γn′′2 for all 1 ≤ i ≤ ωn′′2

b
.

Hence, by Proposition 6.4 there exists a copy of B∗ in G′′2, contradicting that the largest B∗-tiling
in G covers n′ vertices.

Thus Lemma 7.1 holds. �
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With Lemma 7.1 at hand we now can prove Theorem 4.1.

Proof of Theorem 4.1. If σ = ω, then Theorem 4.1 is equivalent to the (non-directed) graph
version of [16, Theorem 4.2].

So we may assume that σ < ω. Set σ′ := (r − 1)σ and ω′ := (r − 1)ω. Let B be the r-partite
bottle graph with neck σ′ and width ω′, set b := |B| and observe that B has a perfect H-tiling. Let
t := (ω′ − σ′)b. Note that it suffices to prove the theorem under the additional assumption that
η � 1/b. Define additional constants ε, d, γ ∈ R and M ′,m ∈ N such that

0 < 1/n� 1/M ′ � ε� d� γ � 1/m� η � 1/b.

Let B∗ := B(m) and set

S :=
2σ

ωγ2
, Q := d1/γe and z := Q(S + 1).

Note that B∗ has a perfect H-tiling.
Suppose G is an n-vertex graph as in the statement of the theorem. Apply Lemma 5.2 with

parameters ε, d and M ′ to G. This gives us clusters V1, . . . , Vk, an exceptional set V0 and a
pure graph G′, where |V0| ≤ εn and |V1| = . . . = |Vk| =: q. Let R be the reduced graph of G with
parameters ε, d and M ′; so k = |R|. By Lemma 5.3, R has degree sequence dR,1 ≤ dR,2 ≤ . . . ≤ dR,k
such that

dR,i ≥
(

1− ω + σ

h

)
k +

σ

ω
i+

ηk

2
=

(
1− ω′ + σ′

b

)
k +

σ′

ω′
i+

ηk

2
for all 1 ≤ i ≤ ωk

h = ω′k
b .

In what follows when we consider an s-swapping set in some blow-up R(w) of R, we always implic-
itly mean an s-swapping set in R(w) with respect to (v1, . . . , vkw) where V (R(w)) = {v1, . . . , vkw}
and dR(w)(v1) ≤ dR(w)(v2) ≤ · · · ≤ dR(w)(vkw). That is, each blow-up R(w) of R comes equipped
with an ordering of its vertices based on the degrees; these orderings are defined by the functions
Ij below.

Claim 7.2. R′ := R((mt)z) contains a B∗-tiling T covering at least (1−η/2)k(mt)z = (1−η/2)|R′|
vertices.

Proof of Claim 7.2. If R contains a B∗-tiling covering at least (1− η/2)k vertices then Lemma 6.2
implies that Claim 7.2 holds. Suppose then that the largest B∗-tiling T in R covers exactly c
vertices where c < (1− η/2)k. Then by Lemma 7.1, there exists an expanding set of size γk for T

in R or an ωγk
σ -swapping set of size γk for T in R. Define B′ to be the r-partite bottle graph with

neck σ′ and width ω′ − 1. Set ω∗ := ω′m.
Step 1: Find a B∗-tiling covering at least (c+ γk)(mt)S+1 vertices in R((mt)S+1).
Case 1: There exists an expanding set {z1, . . . , zγk} for T , and hence also an associated injection

f : {z1, . . . , zγk} → T .
In this case we do the following: For each 1 ≤ i ≤ γk, separate R[zi ∪ f(zi)] into a copy of Kr

(containing zi and one vertex from each ω∗-class of f(zi)), a copy of B′ and a copy of B(m − 1).
Then we have a (B∗, B(m− 1), B′,Kr)-tiling in R covering at least c+ γk vertices. By Lemma 6.2,
R(mt) contains a B∗-tiling covering at least (c+ γk)mt vertices. Further applying Lemma 6.2 we
obtain a B∗-tiling covering at least (c+ γk)(mt)S+1 vertices in R((mt)S+1), as desired.

Case 2: There does not exist an expanding set of size γk for T in R.
For each 1 ≤ j ≤ S, Proposition 6.3 implies that R((mt)j) has degree sequence dR((mt)j),1 ≤

dR((mt)j),2 ≤ . . . ≤ dR((mt)j),k(mt)j such that

dR((mt)j),i ≥
(

1− ω + σ

h

)
k(mt)j +

σ

ω
i+

(
ηk

2
− σ

ω

)
(mt)j for all 1 ≤ i ≤ ωk(mt)j

h .
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Define for 0 ≤ j ≤ S bijections Ij : V (R((mt)j)) → [k(mt)j ] where Ij(x) := i implies that
dR((mt)j)(x) = dR((mt)j),i. In particular, suppose that x ∈ V (R) and let x1, . . . , x(mt)j denote the

(mt)j vertices in R((mt)j) that correspond to x. Suppose that I0(x) = i. Then we may assume
that

Ij(xs) = (i− 1)(mt)j + s > (I0(x)− 1)(mt)j for each 1 ≤ s ≤ (mt)j .(8)

To put all this another way, one can view I0 as an ordering of the vertices in R in terms of the
vertex degrees; Ij is the ordering of R((mt)j) ‘inherited’ from the ordering I0.

Note that for all 0 ≤ j ≤ S,  ∑
x∈V (R((mt)j))

Ij(x)

 ≤ k2(mt)2j .(9)

Denote by Ω∗T the set of all vertices in V (R) that belong to ω∗-classes of copies of B∗ in T . As

there does not exist an expanding set of size γk for T in R, then there exists an ωγk
σ -swapping

set {z1, . . . , zγk} for T in R. Hence there also exists a set {y1, . . . , yγk} ⊆ Ω∗T such that (zi, yi)

is an ωγk
σ -swapping pair for each 1 ≤ i ≤ γk, such that B∗yi 6= B∗yj

1 for all i 6= j, and such that

I0(yi) ≥ I0(zi) + ωγk
σ for all 1 ≤ i ≤ γk.

For each 1 ≤ i ≤ γk, note that R[(zi∪V (B∗yi))\{yi}] can be separated into a copy of B containing
zi and a copy of B(m − 1). Then we have a (B∗, B(m − 1), B)-tiling T1 covering c vertices in R.

Further, since each (zi, yi) is an ωγk
σ -swapping pair, we have that ∑

x∈V (R)\V (T1)

I0(x)

 ≥
 ∑
x∈V (R)\V (T )

I0(x)

+
ωγ2k2

σ
.(10)

By Lemma 6.2, T1(mt) contains a perfect B∗-tiling T ′, i.e. T ′ is a B∗-tiling covering c(mt)
vertices in R(mt). Observe that T ′ in R(mt) covers proportionally the same amount of vertices as
T in R. Further, (8) and (10) imply that

∑
x∈V (R(mt))\V (T ′)

I1(x) ≥

 ∑
x∈V (R)\V (T1)

(I0(x)− 1)

 (mt)2

≥

 ∑
x∈V (R)\V (T )

I0(x)

+
ω(γk)2

2σ

 (mt)2.(11)

Denote by Ω∗T ′ the set of all vertices in R(mt) that belong to ω∗-classes of copies of B∗ in
T ′. Suppose that there does not exist an expanding set of size γkmt for T ′ in R(mt). Then by

Lemma 7.1 there must exist an ωγkmt
σ -swapping set of size γkmt for T ′ in R(mt). As before we

can produce a (B∗, B(m− 1), B)-tiling T ′1 covering c(mt) vertices in R(mt). Then by Lemma 6.2,
T ′1(mt) contains a perfect B∗-tiling T ′′, i.e. T ′′ is a B∗-tiling covering c(mt)2 vertices in R((mt)2).
Observe, similarly as before, that T ′′ in R((mt)2) covers proportionally the same amount of vertices

1As in Definition 6.6.

16



as T in R and ∑
x∈V (R((mt)2))\V (T ′′)

I2(x) ≥

 ∑
x∈V (R(mt))\V (T ′)

I1(x)

+
ω(γkmt)2

2σ

 (mt)2

(11)

≥

 ∑
x∈V (R)\V (T )

I0(x)

+
ω(γk)2

σ

 (mt)4.

Note that (9) implies that one can repeat this argument at most S times; that is, for some j ≤ S
we must obtain an expanding set of size γk(mt)j in R((mt)j). More precisely, we obtain a B∗-tiling

T (j) in R((mt)j) covering c(mt)j vertices, such that there exists an expanding set of size γk(mt)j

for T (j) in R((mt)j). Then as before, one can use this expanding set and Lemma 6.2 to obtain a
B∗-tiling covering at least (c+ γk)(mt)S+1 vertices in R((mt)S+1), as desired.

General Step:
Repeating the whole argument from Step 1 at most Q times we see that R((mt)Q(S+1)) =

R((mt)z) = R′ has a B∗-tiling T covering at least (1− η/2)|R′| vertices. Thus Claim 7.2 holds. �

Now for each 1 ≤ i ≤ k, partition Vi into classes V ∗i , Vi,1, . . . , Vi,(mt)z where q′ := |Vi,j | =
bq/(mt)zc ≥ q/(2(mt)z) for all 1 ≤ j ≤ (mt)z. Lemma 5.2 implies that qk ≥ (1− ε)n, therefore

q′|R′| = bq/(mt)zck(mt)z ≥ qk − k(mt)z ≥ (1− 2ε)n.(12)

Fact 5.4 tells us that for each ε-regular pair (Vi1 , Vi2)G′ with density at least d we have that
(Vi1,j1 , Vi2,j2)G′ is 2ε(mt)z-regular with density at least d − ε ≥ d/2 (for all 1 ≤ j1, j2 ≤ (mt)z).

Note that 2ε(mt)z ≤ ε1/2. So we can label the vertex set of R′ so that V (R′) = {Vi,j : 1 ≤ i ≤ k, 1 ≤
j ≤ (mt)z} and see that if Vi1,j1Vi2,j2 ∈ E(R′) then (Vi1,j1 , Vi2,j2)G′ is ε1/2-regular with density at
least d/2.

We know by Claim 7.2 that R′ has a B∗-tiling T that covers at least (1− η/2)|R′| vertices. Let

B̂∗ be a copy of B∗ in T and label the vertices of B̂∗ so that V (B̂∗) = {Vi1,j1 , Vi2,j2 , . . . , Vibm,jbm}.
Set V ′ := Vi1,j1 ∪ Vi2,j2 ∪ . . . ∪ Vibm,jbm . Applying Lemma 6.1 with η2, q′, d/2, ε1/2 playing the roles
of β, q, d, ε, we have that G′[V ′] has a B∗-tiling covering at least (1 − η2)q′bm vertices. Applying
Lemma 6.1 in this way to each copy of B∗ in T we see that G′ ⊆ G has a B∗-tiling covering at least((

1− η2
)
q′bm

)
×
(
(1− η/2) |R′|

)
/bm

(12)

≥
(
1− η2

)
(1− η/2) (1− 2ε)n ≥ (1− η)n

vertices. Since each copy of B∗ has a perfect H-tiling, G contains an H-tiling covering all but at
most ηn vertices. �

Theorem 1.4 easily implies Theorem 1.5.

Proof of Theorem 1.5. Let H, x ∈ (0, 1) and η > 0 be as in the statement of the theorem.
Suppose n is sufficiently large and let G be an n-vertex graph as in the statement of the theorem.

Note that it suffices to prove the result in the case when x ∈ (0, 1)∩Q. Thus, there exist a, b ∈ N
such that x = a/b. Define σ1 := a(r− 1)σ and ω1 := a(r− 1)ω+ (b− a)h = bh− aσ. Let H1 be the
r-partite bottle graph with neck σ1 and width ω1, and observe that σ1 < ω1 and |H1| = b(r − 1)h.

Claim. H1 contains an H-tiling covering x|H1| vertices.

The claim follows since one can tile H1 with a(r − 1) copies of H where each σ-class lies in the
σ1-class of H1. Thus, we have an H-tiling covering a(r − 1)h = x|H1| vertices in H1, as desired.
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Note that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i =

(
1− ω1 + σ1

b(r − 1)h

)
n+

σ1

ω1
i

for all i ≤
(
h−xσ

(r−1)h

)
n = ω1n

b(r−1)h . Thus, applying Theorem 1.4 with H1 playing the role of H, we

produce an H1-tiling in G covering all but at most ηn vertices. Then the claim implies that we
have an H-tiling in G covering at least x(1− η)n > (x− η)n vertices. �

8. Concluding remarks

In this paper we have given a particular degree sequence condition that forces a graph to contain
an almost perfect H-tiling (Theorem 1.4). In fact, in general for a fixed graph H, Theorem 1.4
yields a whole class of degree sequences that force an almost perfect H-tiling. Indeed, we have the
following consequence of Theorem 1.4.

Theorem 8.1. Let η > 0 and H be a graph with χ(H) = r and h := |H|. Set σ ∈ R such that
σ(H) ≤ σ ≤ h/r and ω := (h− σ) /(r−1). Then there exists an n0 = n0(η, σ,H) ∈ N such that the
following holds: Suppose G is a graph on n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ . . . ≤ dn
such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i for all 1 ≤ i ≤ ωn

h .

Then G contains an H-tiling covering all but at most ηn vertices.

Proof. Note that it suffices to prove the theorem under the assumption that σ ∈ Q. To prove
Theorem 8.1, we define a certain bottle graph H∗ and then apply Theorem 1.4 with input H∗ to
conclude our result.

Since σ ∈ Q, there exist a, b ∈ N such that σ = a/b. Let ω(H) := (h − σ(H))/(r − 1) and
t := b(r− 1)(ω(H)−σ(H)). We define H∗ to be the r-partite bottle graph with neck σt and width
ωt (note σt, ωt ∈ N). Also, notice that |H∗| = ht.

Claim. H∗ contains a perfect H-tiling.

We tile t copies of H into H∗. Firstly, tile b(r− 1)(ω(H)− σ) copies of H into H∗ such that the
σ(H)-classes are all placed in the σt-class of H∗. This leaves

σb(r − 1)(ω(H)− σ(H))− σ(H)b(r − 1)(ω(H)− σ) = ω(H)b(r − 1)(σ − σ(H))

vertices in the σt-class of H∗ to be covered and

ωb(r − 1)(ω(H)− σ(H))− ω(H)b(r − 1)(ω(H)− σ)

= b((r − 1)ω(ω(H)− σ(H))− (r − 1)ω(H)(ω(H)− σ))

= b((h− σ)(ω(H)− σ(H))− (h− σ(H))(ω(H)− σ))

= b(h− ω(H))(σ − σ(H))

vertices in each ωt-class of H∗ to be covered. Let H be the r-partite complete graph with one
vertex class of size (r − 1)ω(H) and (r − 1) vertex classes of size (r − 2)ω(H) + σ(H). Observe
that H has a perfect H-tiling (using r− 1 copies of H). To cover the remaining vertices of H∗, tile
b(σ − σ(H)) copies of H into H∗ such that every vertex class of size (r − 1)ω(H) is placed in the
σt class of H∗. Observe that

((r − 2)ω(H) + σ(H))b(σ − σ(H)) = b(h− ω(H))(σ − σ(H)).

Hence H∗ contains a perfect H-tiling and the claim holds.
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Suppose G is as in the statement of Theorem 8.1. Applying Theorem 1.4 with input G and
H∗, we obtain that G contains an H∗-tiling covering all but at most ηn vertices. (Note the degree
sequence in Theorem 8.1 is precisely the degree sequence of Theorem 1.4 with input H∗.) Since
each copy of H∗ has a perfect H-tiling, we conclude that G contains an H-tiling covering all but
at most ηn vertices.

�

In a similar way, Theorem 1.5 yields a class of degree sequences forcing an almost x-proportional
H-tiling in G.

Theorem 8.2. Let x ∈ (0, 1) and H be a graph with χ(H) = r and h := |H|. Set η > 0. Let σ ∈ R
such that σ(H) ≤ σ ≤ h/r and ω := (h− σ) /(r − 1). Then there exists an n0 = n0(η, x, σ,H) ∈ N
such that the following holds: Suppose G is a graph on n ≥ n0 vertices with degree sequence
d1 ≤ d2 ≤ . . . ≤ dn such that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i for all 1 ≤ i ≤

(
h−xσ

(r−1)h

)
n.

Then G contains an H-tiling covering at least (x− η)n vertices.

Proof. Define H∗ as in the proof of Theorem 8.1. Applying Theorem 1.5 with input H∗, we
obtain that G contains an H∗-tiling covering all but at most (x − η)n vertices. Since each copy
of H∗ has a perfect H-tiling, we conclude that G contains an H-tiling covering all but at most
(x− η)n vertices. �
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